Подпишись и читай
самые интересные
статьи первым!

Многоклеточные животные. Как возникли многоклеточные организмы? Первые многоклеточные организмы появились в эре

Возникновение многоклеточности было важнейшим этапом в эволюции всего царства животных. Размеры тела животных, ранее ограниченные одной клеткой, у многоклеточных значительно возрастают за счет увеличения числа клеток. Тело многоклеточных состоит из нескольких слоев клеток, не менее чем из двух. Среди клеток, образующих тело многоклеточных животных, происходит разделение функций. Клетки дифференцируются на покровные, мускульные, нервные, железистые, половые и т. п. У большинства многоклеточных комплексы клеток, выполняющих одни и те же функции, образуют соответствующие ткани: эпителиальную, соединительную, мышечную, нервную, кровь. Ткани, в свою очередь, образуют сложные органы и системы органов, обеспечивающие жизненные отправления животного.

Многоклеточность чрезвычайно расширила возможности эволюционного развития животных и способствовала завоеванию ими всех возможных сред обитания.

Все многоклеточные животные размножаются половым путем . Половые клетки - гаметы - образуются у них весьма сходно, путем клеточного деления - мейоза,- которое приводит к сокращению, или редукции, числа хромосом.

Для всех многоклеточных характерен определенный жизненный цикл: оплодотворенная диплоидная яйцеклетка - зигота - начинает дробиться и дает начало многоклеточному организму. При созревании последнего в нем образуются половые гаплоидные клетки - гаметы: женские - крупные яйцеклетки или мужские - очень маленькие сперматозоиды. Слияние яйцеклетки со сперматозоидом - оплодотворение, в результате которого вновь образуется диплоидная зигота, или оплодотворенное яйцо.

Видоизменения этого основного цикла у некоторых групп многоклеточных могут возникать вторично в виде чередования поколений (полового и бесполого), или замены полового процесса партеногенезом, т. е. размножением половым путем, но без оплодотворения.
Бесполое размножение, столь характерное для подавляющего большинства одноклеточных, свойственно также низшим группам многоклеточных (губки, кишечнополостные, плоские и кольчатые черви и отчасти иглокожие). Весьма близка к бесполому размножению способность к восстановлению утраченных частей, называемая регенерацией. Она присуща в той или иной степени многим группам как низших, так и высших многоклеточных животных, не способных к бесполому размножению.

Половое размножение многоклеточных животных

Все клетки тела многоклеточных животных разделяются на соматические и половые. Соматические клетки (все клетки тела, кроме половых) диплоидны, т. е. все хромосомы представлены в них парами сходных гомологичных хромосом. Половые клетки обладают лишь одинарным, или гаплоидным, набором хромосом.

Половое размножение многоклеточных происходит при помощи половых клеток: женской яйцеклетки, или яйца, и мужской половой клетки - сперматозоида. Процесс слияния яйцеклетки и сперматозоида называется оплодотворением, в результате которого возникает диплоидная зигота. Оплодотворенное яйцо получает от каждого родителя по одинарному набору хромосом, которые вновь образуют гомологичные пары.

Из оплодотворенного яйца путем его многократного деления, развивается новый организм. Все клетки этого организма, кроме половых, содержат исходное диплоидное число хромосом, таких же, какими обладали его родители. Сохранение характерных для каждого вида числа и индивидуальности хромосом (кариотипа) обеспечивается процессом клеточного деления - митоза.

Половые клетки образуются в результате особого видоизмененного клеточного деления, называемого мейозом. Мейоз приводит к редукции, или уменьшению, числа хромосом вдвое путем двух последовательных делений клетки. Мейоз, так же как и митоз, протекает у всех многоклеточных очень однотипно, в отличие от одноклеточных, у которых эти процессы весьма варьируют.

В мейозе, как и в митозе, различают основные этапы деления: профазу, метафазу, анафазу и телофазу. Профаза первого деления мейоза (профаза I) очень сложная и наиболее длительная. Она подразделяется на пять стадий. При этом парные гомологичные хромосомы, полученные одна от материнского, а другая - от отцовского организма, тесно соединяются, или конъюгируют друг с другом. Конъюгирующие хромосомы утолщаются, и при этом становится заметно, что каждая из них состоит из двух сестринских хроматид, соединенных центромерой, а все вместе они образуют четверку хроматид, или тетраду. При конъюгации могут происходить разрывы хроматид и обмен одинаковыми участками гомологичных, но не сестринских хроматид из одной и той же тетрады (из пары гомологичных хромосом). Этот процесс называется перекрестом хромосом или кроссинговером. Он приводит к возникновению составных (смешанных) хроматид, содержащих сегменты, полученные от обоих гомологов, а следовательно, от обоих родителей. В конце профазы I гомологичные хромосомы выстраиваются в плоскости экватора клетки, а к их центромерам прикрепляются нити ахроматинового веретена (метафаза I). Центромеры обеих гомологичных хромосом отталкиваются друг от друга и отходят к разным полюсам клетки (анафаза I, телофаза I), что приводит к редукции числа хромосом. Таким образом, в каждую клетку попадает только одна хромосома из каждой пары гомологов. Образовавшиеся клетки содержат половинное, или гаплоидное, число хромосом.

После первого деления мейоза обычно почти сразу следует второе. Фаза между этими двумя делениями называется интеркинезом. Второе деление мейоза (II) весьма похоже на митоз, с сильно укороченной профазой. Каждая хромосома состоит из двух хроматид, скрепленных центромерой. В метафазе II хромосомы выстраиваются в экваториальной плоскости. В анафазе II происходит деление центромер, после чего нити веретена растаскивают их к полюсам деления, а каждая хроматида становится хромосомой. Так из одной диплоидной клетки в процессе мейоза образуются четыре гаплоидные. В мужском организме из всех клеток формируются сперматозоиды; в женском в яйцо превращается лишь одна из четырех клеток, а три (маленькие полярные тельца) дегенерируют. Сложные процессы гаметогенеза (спермато- и оогенеза) у всех многоклеточных проходят весьма однотипно.

Половые клетки

У всех многоклеточных животных половые клетки дифференцированы на крупные, обычно неподвижные женские клетки - яйца -и очень мелкие, чаще подвижные мужские клетки - сперматозоиды.

Женская половая клетка - яйцо-чаще всего шаровидной, а иногда более или менее вытянутой формы. Для яйцевой клетки характерно наличие значительного количества цитоплазмы, в которой помещается крупное пузыревидное ядро. Снаружи яйцо одето большим или меньшим количеством оболочек. Яйцевые клетки у большинства животных - самые крупные клетки в организме. Однако размеры их неодинаковы у разных животных, что зависит от количества питательного желтка. Различают четыре основных типа строения яиц: алецитальные, гомолецитальные, телолецитальные и центролецитальные яйца.

Алецитальные яйца почти лишены желтка или содержат его очень мало. Алецитальные яйцеклетки очень малы, они свойственны некоторым плоским червям и млекопитающим.

Гомолецитальные, или изолецитальные, яйца содержат сравнительно мало желтка, который распределен более или менее равномерно в цитоплазме яйца. Ядро занимает в них почти центральное положение. Таковы яйца многих моллюсков, иглокожих и др. Однако у некоторых гомолецитальных яиц имеется большое количество желтка (яйца гидры и др.).

Телолецитальные яйца содержат всегда большое количество желтка, который распределен в цитоплазме яйца весьма неравномерно. Большая часть желтка сосредоточена на одном полюсе яйца, называемом вегетативным полюсом, а ядро смещено в большей или меньшей степени к противоположному полюсу, называемому анимальным полюсом. Такие яйца свойственны разнообразным группам животных. Телолецитальные яйца достигают наиболее крупных размеров, и в зависимости от степени нагруженности желтком их полярность выражена в различной степени. Типичными примерами телолецитальных яиц могут служить яйца лягушек, рыб, пресмыкающихся и птиц, а из беспозвоночных животных - яйца головоногих моллюсков.

Однако не только телолецитальным яйцам, но и всем остальным типам яиц присуща полярность, т. е. у них также существуют различия в структуре анимального и вегетативного полюсов. Кроме указанного увеличения количества желтка на вегетативном полюсе, полярность может проявляться в неравномерном распределении цитоплазматических включений, пигментации яиц и т. п. Имеются данные, свидетельствующие о дифференциации цитоплазмы на анимальном и вегетативном полюсах яйца.

Центролецитальные яйца также очень богаты желтком, но он распределен в яйце равномерно. Ядро помещается в центре яйца, оно окружено очень тонким слоем цитоплазмы, такой же слой цитоплазмы покрывает все яйцо у его поверхности. Этот периферический слой цитоплазмы сообщается с околоядерной плазмой с помощью тонких цитоплазматических нитей. Центролецитальные яйца свойственны многим членистоногим, в частности всем насекомым.

Все яйца покрыты тончайшей плазматической мембраной, или плазмалеммой. Кроме того, почти все яйца окружены еще одной, так называемой желточной оболочкой. Она образуется в яичнике, и ее называют первичной оболочкой. Яйца могут быть одеты также вторичными и третичными оболочками.

Вторичная оболочка, или хорион, яиц образуется за счет окружающих яйцо фолликулярных клеток яичника. Лучшим примером может служить наружная оболочка - хорион - яиц насекомых, состоящая из твердого хитина и снабженная на анимальном полюсе отверстием - микропиле, через которое проникают сперматозоиды.

Третичные оболочки, имеющие обычно защитное значение, развиваются из выделений яйцеводов или придаточных (скорлупковых) желез. Таковы, например, оболочки яиц плоских червей, головоногих моллюсков, студенистые оболочки брюхоногих моллюсков, лягушек и т. п.

Мужские половые клетки - сперматозоиды,- в отличие от яйцевых клеток, очень мелкие, размеры их колеблются в пределах от 3 до 10 мкм. Сперматозоиды имеют очень небольшое количество цитоплазмы, их главную массу составляет ядро. За счет цитоплазмы у сперматозоидов развиваются приспособления к передвижению. Форма и строение сперматозоидов различных животных крайне разнообразны, но наиболее распространенной является форма с длинным жгутикоподобным хвостиком. Такой сперматозоид состоит из четырех отделов: головки, шейки, соединительной части и хвостика.

Головка почти целиком образована ядром сперматозоида, она несет крупное тельце - центросому, помогающую проникновению сперматозоида в яйцеклетку. На границе ее с шейкой расположены центриоли. Из шейки берет начало осевая нить сперматозоида, проходящая через его хвостик. По данным электронной микроскопии ее строение оказалось очень близким к таковому жгутиков: два волоконца в центре и девять по периферии осевой нити. В центральной части осевая нить окружена митохондриями, которые представляют основной энергетический центр сперматозоида.

Оплодотворение

У многих беспозвоночных животных оплодотварение внешнее и происходит в воде, у других имеет место внутреннее оплодотварение.

Процесс оплодотварения заключается в проникновении сперматозойдов в яйцо и в образовании из двух клеток одного опладотваренного яйца.

Этот процесс происходит неодинаково у различных животных, в зависимости от наличия микропиле, характера оболочек и т. п.

У одних животных, как правило, в яйцо проникает один сперматозоид, и при этом за счет желточной оболочки яйца образуется оболочка оплодотворения, препятствующая проникновению других сперматозоидов.

У многих животных в яйцо проникает большее количество сперматозоидов (многие рыбы, пресмыкающиеся и др.), хотя в оплодотворении (в слиянии с яйцевой клеткой) принимает участие лишь один.

При оплодотворении сочетаются наследственные особенности двух особей, что обеспечивает большую жизнеспособность и большую изменчивость потомства, а следовательно, и возможность появления у него полезных приспособлений к различным условиям жизни.

Эмбриональное развитие многоклеточных животных

Весь процесс, от начала развития оплодотворенного яйца до начала самостоятельного существования нового организма вне тела матери (при живорождении) или по выходе его из оболочек яйца (при яйцеродности), называют эмбриональным развитием.

Галлерея

Значимым этапом в истории Земли и эволюции жизни стало возникновение многоклеточности. Это дало мощный толчок к увеличению разнообразия живых существ и их развитию. Многоклеточность сделала возможным специализацию живых клеток в пределах одного организма, включая возникновение отдельных тканей и органов. Первые многоклеточные животные, вероятно, появились в придонных слоях мирового океана в конце протерозоя.
Признаками многоклеточного организма считается то, что его клетки должны быть агрегированы, между ними обязательны разделение функций и установление устойчивых специфических контактов. Многоклеточный организм представляет собой жесткую колонию клеток, в которой сохраняется фиксированное их положение на протяжении всей жизни. В процессе биологической эволюции сходные клетки в теле многоклеточных организмов специализировались на выполнении определенных функций, что привело к формированию тканей и органов. Вероятно, в условиях протерозойского Мирового океана, уже содержавшего примитивные одноклеточные организмы, могла происходить самопроизвольная организация одноклеточных организмов в более высокоразвитые многоклеточные колонии.
Можно только догадываться, какими были первые многоклеточные организмы протерозойской эры. Гипотетическим предком многоклеточных организмов могла быть фагоцителла, которая плавала в толще морской воды за счет биения поверхностных клеток – ресничек кинобласта.
Фагоцителла питалась, захватывая взвешенные в среде частички пищи и переваривая их внутренней клеточной массой (фагоцитобласта). Возможно, именно из кинобласта и фагоцитобласта в процессе эволюционного развития произошло все многообразие форм и тканей многоклеточных организмов. Сама фагоцителла обитала в толще воды, но не имела ни рта, ни кишечника, а ее пищеварение было внутриклеточное. Потомки фагоцителлы приспосабливались к многообразным условиям существования при оседании их на морское дно, при перемещении к поверхности или при изменении источников питания. Благодаря этому у первых многоклеточных организмов постепенно появились рот, кишечник и другие жизненно важные органы.
Еще одна распространенная гипотеза происхождения и эволюции многоклеточных организмов – появление трихоплакса как первого примитивного животного. Этот плоский многоклеточный организм, напоминающий ползущую кляксу, до сих пор считается одним из самых загадочных на планете. Он не обладает ни мускулатурой, ни передним и задним концом, ни осями симметрии, ни какими-либо сложными внутренними органами, но при этом способен размножаться половым путем. Особенности строения и поведения трихоплакса, ползающего по субстрату среди микроводорослей, позволили отнести его к категории одного из самых примитивных многоклеточных животных на нашей планете.
Кто бы ни был предком многоклеточных животных, дальнейший ход эволюции в протерозое привел к появлению так называемых гребневиков. Это планктонные животные с рядами гребных пластинок, образованных сросшимися ресничками. В протерозое они перешли от плавания к ползанию по дну, их тело поэтому сплющилось, выделились головной отдел, двигательный аппарат в виде кожно-мускульного мешка, органы дыхания, сформировались выделительная и кровеносная системы. Линней, создатель первой научной системы органического мира, уделил гребневикам очень небольшое внимание, упомянув в своей «Системе природы» один вид гребневиков. В 1829 году вышла в свет первая в мире большая работа, посвященная медузам. Ее автор, немецкий зоолог Эшшольц (Eschscholtz), описал в ней и несколько видов известных ему гребневиков. Он считал их особым классом медуз, который назвал гребневиками (Ctenophora). Это название сохранилось за ними и в настоящее время» («Жизнь животных», под ред. Н. А. Гладкова, А. В. Михеева).
Более 630 млн лет назад на Земле появились губки, которые развились на морском дне, преимущественно на мелководье, а потом опустились в более глубокие воды. Наружный слой тела губок образован плоскими покровными клетками, в то время как внутренний – жгутиковыми клетками. Одним своим концом губка прирастает к какому-либо субстрату – камням, водорослям, поверхности тела других животных.

Первые многоклеточные организмы жили в придонных слоях древнейших морей и океанов, где внешние условия среды потребовали от них расчленения тела на отдельные части, служившие либо для прикрепления к субстрату, либо для питания. Кормились они, главным образом, органическим веществом (детритом), который покрывал донный ил. Хищников тогда практически не было. Некоторые многоклеточные организмы пропускали через себя переполненные питательным веществом верхние слои морского ила либо поглощали живые бактерии и водоросли, которые в нем обитали.
Плоские и кольчатые черви медленно плавали над самым дном или ползали среди осадков, а трубчатые черви лежали среди донных отложений. В протерозойскую эру в морях и водных бассейнах планеты, вероятно, были широко распространены крупные плоские животные в форме блина, обитавшие на илистом дне, разнообразные медузы, плававшие в толще воды, и примитивные иглокожие. На мелководьях расцветали огромные водоросли – вендотении, которые достигали в длину около одного метра и были похожи на морскую капусту.
Большинство живых существ на нашей планете к концу протерозойской эры уже были представлены многоклеточными формами. Их жизнедеятельность сохранилась в виде отпечатков и слепков на некогда мягком иле. В отложениях того периода можно наблюдать следы ползания, проседания грунта, вырытых норок.
Конец протерозойской эры ознаменовался вспышкой разнообразия многоклеточных организмов и появлением животных, существование которых тогда было тесно связано с морем. Огромное количество остатков многоклеточных животных в слоях возрастом 650-700 млн лет даже послужило причиной выделения в протерозое особого периода, получившего название венд. Он продолжался примерно 110 млн лет и охарактеризовался по сравнению с другими эпохами достижением значительного разнообразия многоклеточных животных.
Возникновение многоклеточное способствовало в дальнейшем увеличению разнообразия живых организмов. Она привела к повышению способности организмов создавать в своем теле запас питательных веществ и реагировать на изменения окружающей среды.
для дальнейшей эволюции биосферы. Живые организмы постепенно начали сами изменять форму и состав земной коры, формировать новую оболочку Земли. Можно сказать, что в протерозое жизнь на планете стала важнейшим геологическим фактором.

Возникновение многоклеточности - это закономерный процесс в эволюции живых форм, так как при этом организм приобретает ряд преимуществ в борьбе за существование. На заре существования эукариот многоклеточность возникала не единожды. Сегодняшние многоклеточные формы жизни на Земле имеют несколько разных одноклеточных предков. Например, считается, что губки имеют другого одноклеточного предка, в отличие от остальных организмов.

Предками многоклеточных были колониальные формы простейших. В колониях клетки обычно не настолько дифференцированы (если их специализация вообще наблюдается) и при отделении могут существовать независимо.

Расцвет многоклеточных форм начался около 600 млн лет назад. Однако появиться они могли намного раньше, около 2 млрд лет назад. На это указывают археологические находки червеобразных организмов и многоклеточных водорослей.

Настоящая многоклеточность (с выделением тканей) характерна только для эукариот (у прокариот встречаются колонии). Возможно это связано со сложностью генома эукариотических клеток, который обеспечивает гибкость («настраиваемость») клеток, и отсюда способность их изменять свой метаболизм и строение. Важную роль могла сыграть наследственная изменчивость, митоз, мейоз.

Многоклеточность позволяет наиболее полно использовать резерв наследственной изменчивости, что ускоряет эволюционные изменения. Большую роль в этом играет половое размножение, в котором объединены половой процесс и размножение.

Биологическая эволюция предполагает совершенствование жизненно-важных функций организмов, что во многом достигается путем их дифференциации. В результате обособления различных процессов жизнедеятельности возникают специальные структуры. Это могут быть как структуры клетки, так и части многоклеточного организма. Разделение и специализация функций и структур можно рассматривать как одно из свойств живого.

У одноклеточных эукариот (инфузорий) бывают пищеварительные вакуоли, специализирующиеся на переваривании, утилизации и выделении веществ, что напоминает своеобразную пищеварительную систему. Есть сократительные вакуоли, регулирующие водный баланс (выделительная система). Реснички и жгутики одноклеточных можно рассматривать как органы движения, позволяющих искать пищу и избегать опасности.

Однако разделение структур и функций намного эффективнее в многоклеточном организме. Взаимосвязь клеток усиливает жизненную силу системы за счет повторения клеточных процессов, разделения функций, образования специальных структур (тканей, органов, систем органов).

Многоклеточные организмы обычно крупнее одноклеточных. Это позволяет им питаться более крупной пищей, с другой стороны - они сами реже поедаются.

На поддержание многоклеточности требуется больше энергии. Поэтому она могла возникнуть, лишь когда уровень кислорода в атмосфере достиг определенной величины.

Важную роль в возникновении многоклеточности сыграло появление у одноклеточных эукариот ряда свойств и особенностей. Так хищные простейшие могли выделять определенные вещества для «приклеивания» к себе жертвы. Такие соединения (коллаген и др.) впоследствии могли начать выполнять роль заполнителя межклеточного пространства, а также для скрепления клеток между собой.

Выделяемые простейшими сигнальные вещества (для привлечения жертв или отпугивания хищников) в процессе эволюции стали использоваться для взаимодействия клеток в пределах одного организма.

МОСКВА, 12 дек — РИА Новости. Древнейшие многоклеточные организмы, обнаруженные в середине 20 века в Эдиакарских холмах в Австралии, могут быть не примитивными морскими беспозвоночными, а сухопутными лишайниками, заявляет американский палеонтолог в статье, опубликованной в журнале Nature .

Первые многоклеточные организмы возникли на Земле в протерозое — отрезок геологической истории, охватывающий период от 2500 до 550 миллионов лет назад. На сегодняшний день ученые открыли крайне небольшое число окаменелостей, относящихся к этому периоду. Наиболее известными из них являются отпечатки многоклеточных организмов, найденные в породах Эдиакарских холмов в Австралии в 1947 году.

Грегори Реталлак (Gregory Retallack) из университета штата Орегон в городе Юджин (США) усомнился в том, что эти организмы были морскими беспозвоночными, и предложил свое объяснение их природы, изучив химический состав пород, в которых залегали отпечатки древнейших живых существ.

Внимание Реталлака привлек тот факт, что породы, окружавшие останки эдиакарских существ, не были похожи по своей структуре и минеральному составу на осадочные отложения, сформировавшиеся на дне моря. Ученый решил проверить свои подозрения, изучив химический состав образцов из Эдиакарских холмов и их микроструктуру при помощи электронного микроскопа.

Химический состав почвы, а также форма и размеры минеральных зерен говорят о том, что эта часть Австралии находилась не в зоне тропического, а умеренного или даже субарктического климата. Вода у берегов будущих Эдиакарских холмов должна была замерзать во время зимы, что ставит под сомнение возможность существования примитивных многоклеточных внутри нее.

С другой стороны, минеральный состав пород, окружающих отпечатки, очень похож на палеозоли — окаменевшие фрагменты древних почв. В частности, у образцов из Эдиакарских холмов и других фрагментов палеозолей совпадает изотопный состав, а на поверхности образцов присутствуют микроскопические выемки, похожие на пленочные колонии бактерий или примитивные корни лишайников или грибов.

По словам Реталлака, почва и подобные "корни" не должны были существовать на дне мелких заливов или других частей первичного океана. Это позволило ему предположить, что найденные отпечатки на самом деле не являются морскими многоклеточными организмами, а окаменелыми останками лишайников, обитавшими на поверхности суши. Часть из "многоклеточных животных", по мнению исследователя, на самом деле являются следами от кристаллов льда, вмерзших внутрь древней почвы.

Подобный вывод уже встретил критику со стороны научного сообщества. В частности, палеонтолог Шухай Сяо (Shuhai Xiao) из Политехнического университета Виргинии (США) отметил в комментариях к статье в журнале Nature, что микроскопические углубления на поверхности эдиакарских пород могли оставить только движущиеся организмы, а не неподвижные лишайники. По его словам, аналогичные останки многоклеточных организмов были обнаружены и в других отложениях конца протерозоя, чье "морское" происхождение не вызывает сомнения.

Земле до-стигало 1% от нынешнего. Этого было достаточно для жизнедеятельности некоторых микро-организмов, но для многоклеточных растений и особенно животных требует-ся заметно более высокая концентра-ция кислорода (то есть его количество в каждом кубометре воздуха).

Во всяком случае, хищников в тогдашних экосистемах не бы-ло. Мир древнейших многоклеточных организмов остается крайне загадочным, и изучающие их палеонтологи находятся фактически в положении космонавтов, столкнувшихся с фауной чужой планеты.

Судя по всему, первые многоклеточные животные так и не оставили прямых потомков. А пришедшие им на смену привычные для нас скелетные организмы возникли на совершенно иной основе и широко расселились по всей нашей планете .

На этой странице материал по темам:

  • Предками первфх мнргоклеточных чвляись

  • Протерозойскаяэракратко

  • Доклад 5 класс по биологии протеразойская эра

  • Арамарфозы протеразойской эры

  • Откуда взялись многоклеточные на земле

Вопросы к этой статье:

  • С чем связано появление многоклеточных растений и животных?

  • Почему многоклеточные организмы нуждаются в большей концентрации кислорода, чем одноклеточные?

  • Почему животным требуется больше кислорода для своего обмена веществ, чем растениям?

  • Сократилась или возросла общая масса всех живых организмов на Земле з результате «кислородной революции»?

  • Привело ли появление организмов из многих клеток к исчезновению одноклеточных? Почему?

  • В чем сходство некоторых древних многоклеточных с современными лишайниками?

  • Можно ли встреть сейчас на нашей планете первых многоклеточных животных?

Включайся в дискуссию
Читайте также
Кулинарные рецепты и фоторецепты
Салат с соевым соусом мясом огурцом и помидором
Гречневая каша с вешенками