Подпишись и читай
самые интересные
статьи первым!

Первый подводный атомный взрыв. Надводный ядерный взрыв

Американский физик Роберт Оппенгеймер (Robert Oppenheimer), он же «отец атомной бомбы», родился в Нью-Йорке в 1904 году в семье обеспеченных и образованных евреев. Во время Второй мировой войны он возглавлял разработки американских ядерщиков по созданию первой в истории человечества атомной бомбы.

Название испытания: Trinity (Троица)
Дата: 16 июля 1945 года
Место: полигон в Аламогордо, штат Нью-Мексико.

Это было испытание первой в мире атомной бомбы. На участке диаметром в 1,6 километра в небо взметнулся гигантский фиолетово-зелено-оранжевый огненный шар. Земля содрогнулась от взрыва, к небу поднялся белый столб дыма и стал постепенно расширяться, принимая на высоте около 11 километров устрашающую форму гриба


Название испытания: Baker
Дата: 24 июля 1946 года
Место: Лагуна атолла Бикини
Тип взрыва: Подводный, глубина 27,5 метра
Мощность: 23 килотонны

Целью проведения испытаний было исследование воздействия ядерного оружия на военно-морские суда и их персонал. 71 корабль был превращен в плавучие мишени. Это было пятое испытание ядерного оружия. Взрыв поднял в воздух несколько миллионов тонн воды.

Название испытания: Able (в рамках операции Ranger)
Дата: 27 января 1951 года
Место: полигон Невады


Название испытания: George
Дата: 1951 год

Название испытания: Dog
Дата: 1951 год
Место: Ядерный полигон в Неваде


Название испытания: Mike
Дата: 31 октября 1952 года
Место: Остров Elugelab («Flora»), атолл Эневейта
Мощность: 10.4 мегатонны

Устройство, взорванное при испытании Майка и названное «колбасой», было первой настоящей «водородной» бомбой мегатонного класса. Грибовидное облако достигло высоты 41 км при диаметре 96 км.


Название испытания: Annie (в рамках операции «Апшот-Нотхол»)
Дата: 17 марта 1953 года
Место: Ядерный полигон в Неваде
Мощность: 16 килотонн

Название испытания: Grable (в рамках операции «Апшот-Нотхол»)
Дата: 25 мая 1953 года
Место: Ядерный полигон в Неваде
Мощность: 15 килотонн


Название испытания: Castle Bravo
Дата: 1 марта 1954 года
Место: атолл Бикини
Тип взрыва: на поверхности
Мощность: 15 мегатонн

Взрыв водородной бомбы Castle Bravo был самым мощным взрывом из всех испытаний, когда либо проводимых США. Мощность взрыва оказалась намного больше первоначальных прогнозов в 4-6 мегатонн.

Название испытания: Castle Romeo
Дата: 26 марта 1954 года
Место: на барже в кратере Bravo, атолл Бикини
Тип взрыва: на поверхности
Мощность: 11 мегатонн

Мощность взрыва оказалась в 3 раза больше первоначальных прогнозов. Romeo был первым испытанием, произведенным на барже.

Название испытания: Seminole
Дата: 6 июня 1956 года

Мощность: 13.7 килотонн


Название испытания: Priscilla (в рамках серии испытаний «Plumbbob»)
Дата: 1957 год
Место: Ядерный полигон в Неваде
Мощность: 37 килотонн

Название испытания: Umbrella
Дата: 8 июня 1958 года
Место: Лагуна Эниветок в Тихом океане
Мощность: 8 килотонн

Подводный ядерный взрыв был произведён в ходе операции «Hardtack». В качестве мишеней использовались списанные корабли.


Название испытания: Oak
Дата: 28 июня 1958 года
Место: Лагуна Эниветок в Тихом океане
Мощность: 8.9 мегатонн


Название испытания: АН602 (она же «Царь-бомба» и «Кузькина мать»)
Дата: 30 октября 1961 года
Место: полигон Новая Земля
Мощность: более 50 мегатонн


Название испытания: AZTEC (в рамках проекта «Доминик»)
Дата: 27 апреля 1962 года
Место: остров Рождества
Мощность: 410 килотонн

Название испытания: Chama (в рамках проекта «Доминик»)
Дата: 18 октября 1962 года
Место: Остров Джонстон
Мощность: 1.59 мегатонн

Название испытания: Truckee (в рамках проекта «Доминик»)
Дата: 9 июня 1962 года
Место: Остров Рождества
Мощность: более 210 килотонн

Название испытания: YESO
Дата: 10 июня 1962 года
Место: Остров Рождества
Мощность: 3 мегатонны

Название испытания: «Единорог» (фр. Licorne)
Дата: 3 июля 1970 года
Место: атолл во Французской Полинезии
Мощность: 914 килотонн

Название испытания: Rhea
Дата: 14 июня 1971 года
Место: Французская Полинезия
Мощность: 1 мегатонна

При атомной бомбардировке Хиросимы (атомная бомба «Малыш», 6 августа 1945) общее количество погибших составило от 90 до 166 тысяч человек

При атомной бомбардировке Нагасаки (атомная бомба «Толстяк», 9 августа 1945) общее количество погибших составило от 60 до 80 тысяч человек. Эти 2 бомбардировки стали единственным в истории человечества примером боевого использования ядерного оружия.

Подводным ядерным взрывом называется взрыв, осуществленный в воде на той или иной глубине. При таком взрыве вспышка и светящаяся область, как правило, не видны. При подводном взрыве на небольшой глубине над поверхностью воды поднимается полый столб воды, достигающий высоты более километра. В верхней части столба образуется облако, состоящее из брызг и паров воды. Это облако может достигать несколько километров в диаметре. Через несколько секунд после взрыва водяной столб начинает разрушаться и у его основания образуется облако, называемое базисной волной. Базисная волна состоит из радиоактивного тумана; она быстро распространяется во все стороны от эпицентра взрыва, одновременно поднимается вверх и относится ветром. Спустя несколько, минут базисная волна смешивается с облаком султана (султан - клубящееся облако, окутывающее верхнею часть водяного столба) и превращается в слоисто-кучевое облако, из которого выпадает радиоактивный дождь. В воде образуется ударная волна, а на ее поверхности - поверхностные волны, распространяющиеся во все стороны. Высота волн может достигать десятков метров. Подводные ядерные взрывы предназначены для уничтожения кораблей и разрушений подводной части сооружений. Кроме того, они могут осуществляться для сильного радиоактивного заражения кораблей и береговой полосы.

Поражающие факторы ядерного взрыва и их воздействие на различные объекты.

Ядерный взрыв сопровождается выделением огромного количества энергии и способен практически мгновенно вывести из строя на значительном расстоянии незащищенных людей, открыто расположенную технику, сооружения и различные материальные средства. Основными, поражающими факторами ядерного взрыва являются: ударная волна (сейсмовзрывные волны), световое излучение, проникающая радиация электромагнитный импульс, и радиоактивное заражение местности.

Ударная волна. Ударная волна является основным поражающим фактором ядерного взрыва. Она представляет собой область сильного сжатия среды (воздуха, воды), распространяющуюся во все стороны от точки взрыва со сверхзвуковой скоростью. В самом начале взрыва передней границей ударной волны является поверхность огненного шара. Затем, по мере удаления от центра взрыва, передняя граница (фронт) ударной волны отрывается от огненного шара, перестает светиться и становится невидимой.



Основными параметрами ударной волны являются избыточное давление во фронте ударной волны, время ее действия и скоростной напор. При подходе ударной волны к какой-либо точке пространства в ней мгновенно повышается давление и температура, а воздух начинает двигаться в направлении распространения ударной волны. С удалением от центра взрыва давление во фронте ударной волны падает. Затем становится меньше атмосферного (возникает разрежение). В это время воздух начинает двигаться в направлении, противоположном направлению распространения ударной волны. После установления атмосферного давления движение воздуха прекращается.

Влияние условий взрыва на распространение ударной волны

На распространение ударной волны и ее поражающее дейст­вие основное влияние оказывают метеорологические условия, рельеф местности и лесные массивы.

Метеорологические условия оказывают существенное влияние только па параметры слабых ударных волн (DРср 0,1 кг/с). Как правило, летом в жаркую погоду характерно ослабление параметров ударной волны по всем показателям, а зимой –ее усиление, особенно в направлении ветра. Вследствиеэтогоразмеры зон поражения, особенно объектов малой прочности, могут изменяться в несколько раз.

При дожде и тумане наблюдается уменьшение давления воздушной ударной волны, особенно на больших расстояниях от места взрыва. В условиях среднего дождя, тумана давления во фронте ударной волны на 5-15% меньше, чем при отсутствии осадков.

В условиях сильного дождя и тумана давлениев ударнойволне уменьшается на 15-30%.

Рельеф местности может усилить или ослабить действие ударной волны. При крутизне скатов 10-20° давление возрастает на 10-50%, а при крутизне 30° давление может увеличиваться в 2 раза и более. В оврагах, лощинах, направление которых совпадает с направлением движения ударной волны, давление на 10-20% больше, чем на поверхности. На обратных скатах высот, по отношению к центру взрыва, а также в лощинах и оврагах, расположенных под большим углом к направлению распространения ударной волны, давление в ее фронте уменьшается. Кратность уменьшения давления зависит от крутизны обратного ската. При крутизне ската 20° давление уменьшается в 1,1-1,4 раза, а при крутизне 30° - в 1,2-1,7 раза.

Подводными ядерными взрывами называются взрывы ниже поверхности воды, т. е. взрывы, для которых средой, окружающей зону реакции, является вода.

В результате воздействия рентгеновского излучения на воду ее тонкий слой сильно прогревается и превращается в раскаленный газ, излучением этого слоя превращается в раскаленный газ следующий тонкий слой воды и т. д. Таким образом, в воде в результате ее послойного прогрева образуется раскаленный объем. Процесс расширения этого объема в невозмущенной воде называется тепловой волной в воде.

Внутри раскаленного объема вследствие больших градиентов давления на его границе возникают механические возмущения. С увеличением этого объема и уменьшением температуры среды в нем скорость распространения тепловой волны уменьшается быстрее, чем скорость распространения механических возмущений.

На расстоянии от центра взрыва примерно (0,03—0,04)

м. скорость распространения механических возмущений начинает превышать

скорость тепловой волны и в окружающей воде в это время происходит скачкообразное увеличение давления, плотности, температуры и скорости ее движения. Процесс распространения этих возмущений называется ударной волной в воде или подводной ударной волной.

Подводная ударная волна, распространяясь от центра взрыва во все стороны, достигает поверхности воды. Падение подводной ударной волны на поверхность воды приводит к возникновению в воздухе преломленной ударной волны, а в воде — отраженной волны разрежения. В результате отражения подводной ударной волны от водной поверхности над эпицентром взрыва образуется водяной купол

Вследствие значительного градиента давления в преломленной воздушной ударной волне и подъема водяного купола в воздухе формируется другая ударная волна, которая называется эпицентральной. При распространении волны разрежения в воде возникают растягивающие усилия, приводящие к разрыву сплошности — кавитации жидкости в большой области вокруг эпицентра взрыва. След этой области на поверхности воды виден в виде светлого расширяющегося вокруг водяного купола кольца.

В результате воздействия на водяную среду сначала тепловой, а затем ударной волн в окрестности центра взрыва происходит ионизация, диссоциация и испарение воды, в воде возникает парогазовый пузырь, наполненный радиоактивными продуктами, образовавшимися в начальной стадии взрыва.

Сразу же после возникновения парогазовый пузырь начинает расширяться сначала под действием своего внутреннего давления, затем, после того как оно станет меньше гидростатического, в результате инерционного движения масс воды, приобретенного на предыдущей стадии его расширения.

Если взрыв происходит на значительной глубине и на достаточно большом расстоянии от дна акватории, давление пара внутри парогазового пузыря, достигшего максимального размера, становится значительно меньше давления окружающей воды. Более высокое давление в окружающей пузырь воде вызывает его сжатие, в результате чего давление внутри него повышается, происходит частичная конденсация пара.

В конце стадии сжатия давление пара в пузыре вновь становится значительно выше гидростатического, поэтому начинается новый цикл его расширения — сжатия. После трех циклов расширения — сжатия (пульсаций) в пузыре конденсируется значительное количество пара и его дальнейшая пульсация практически прекращается.

В стадии расширения пузырь имеет сферическую форму, в стадии сжатия она отличается от сферической, так как донная часть пузыря в результате действия большого гидростатического давления сжимается быстрее, чем верхняя.

Во время сжатия в первой пульсации парогазовый пузырь начинает всплывать. По истечении определенного времени он прорывается через поверхность воды.

При взрыве на небольшой глубине пузырь прорывается через поверхность воды во время расширения в первой пульсации, с увеличением глубины взрыва он может прорываться во время сжатия в первой пульсации или в любой момент расширения — сжатия во второй и третьей пульсации, а также после прекращения пульсации. При взрыве вблизи дна акватории пузырь «притягивается» ко дну и его всплытие резко замедляется.

В результате прорыва парогазового пузыря через поверхность воды в воздухе образуется еще одна, третья воздушная ударная волна, а водяной купол превращается в поднимающийся полый водяной столб. Пары из пузыря вместе с радиоактивными продуктами взрыва поднимаются в верхнюю часть столба, образуя конденсационное облако. Водяной столб, увенчанный конденсационным облаком, называют взрывным султаном

Облако султана (пароводяное облако при взрыве на малой глубине) является источником проникающей радиации — главным образом гамма-излучения радиоактивных продуктов деления и активации.

После достижения максимальной высоты подъема взрывной султан обрушается. В результате разрушения стенок султана (обрушение большой массы воды) и выпадения обильных осадков из конденсационного облака у его основания образуется базисная волна - вихревое кольцо плотного радиоактивного тумана, водяных капель и брызг.

Базисная волна является вторым источником проникающей радиации в основном гамма-излучения радиоактивных продуктов взрыва. Базисная волна быстро распространяется над акваторией во всех направлениях от эпицентра взрыва, увеличивается по высоте и сносится ветром.

С течением времени (3-5 мин) она отрывается от поверхности воды и сливается с конденсационным облаком, образуется остаточное облако взрыва, которое имеет слоисто-кучевой вид. Из движущегося под действием ветра остаточного облака выпадают радиоактивные осадки - создается радиоактивное заражение.

В результате расширения парогазового пузыря и схлопывания воронки, образующейся в воде при прорыве пузыря в атмосферу, происходит радиальное движение воды, которое вызывает возникновение серии кольцевых гравитационных волн.

Воздействие ударной волны в воде на дно акватории мо­жет привести к образованию отражений волны в воде и сейсмических волн в грунте. Последние могут генерировать волны в воде. Их называют волнами сейсмического происхождения в воде.

При подводном ядерном взрыве вблизи дна в грунте образуется воронка и навал грунта.

При подводном взрыве на мелководной акватории расширяющийся парогазовый пузырь приводит в движение большое количество грунта, который в дальнейшем вовлекается в образующееся облако султана или пароводяное облако.

Поражающее действие подводного ядерного взрыва

При подводном ядерном взрыве поражение объектов флота и инженерных сооружений прибрежной полосы может быть вызвано взрывным султаном, подводной ударной волной, гравитационными волнами, сейсмовзрывными волнами в воде сейсмического происхождения и воздушными ударными волнами. Кроме того, подводный взрыв может вызывать радиационное поражение, которое обусловливается главным образом гамма-излучением из облака султана, базисной волны, пароводяного облака и радиоактивно зараженной акватории. При взрыве вблизи дна образующийся вокруг воронки вал грунта может создать заграждение судоходных участков.

Основными поражающими факторами подводного ядерного взрыва являются взрывной султан, подводная ударная волна и гравитационные волны.

Взрывной султан представляет собой гигантский полый водяной столб, увенчанный конденсационным облаком. Основными параметрами взрывного султана являются радиус основания и высота подъема. Их значения зависят от мощности и глубины взрыва. При подводном ядерном взрыве среднего диапазона мощности на глубине 200 м радиус основания султана составляет около 400 м, высота подъема - 1000 м, а при взрыве сверхкрупного диапазона мощности на той же глубине радиус основания султана достигает 1000 м, высота подъема 3500 м.

Взрывной султан и конденсационное облако

Любые плавающие объекты и летательные аппараты, оказавшиеся в зоне султана, разрушаются.

Подводная ударная волна представляет собой резкое сжатие воды, распространяющееся во все стороны от центра взрыва. Она распространяется со скоростью около 1500 м/с. Переднюю границу подводной ударной волны называют фронтом. Здесь давление имеет максимальное значение.

В момент прихода фронта подводной ударной волны в данную точку давление воды в этой точке мгновенно увеличивается от гидростатического до максимального, находящийся здесь объект испытывает резкий удар. Качественно изменение давления в подводной ударной волне в данной точке с течением времени похоже на изменение давления в воздушной ударной волне. Отличие состоит в появлении вторичного плавного увеличения давления по истечении фазы разрежения.

Подводная ударная волна может оказывать поражающее действие на подводные лодки и надводные корабли вне зоны взрывного султана. Кроме того, в результате действия подводной ударной волны на корпус корабля возникают сотрясения его палуб и платформ, которые могут вызывать поражения личного состава.

Гравитационные волны могут:

  • разрушать гидротехнические сооружения порта (молы, волноломы, причалы, пирсы, батопорты и т. п.);
  • повреждать корабли, стоящие у пирсов, и даже выбрасывать их на берег;
  • наносить ущерб расположенным на берегу вблизи уреза воды судостроительным и судоремонтным предприятиям;
  • повреждать подъемно-транспортное оборудование, связи и коммуникаций;
  • перемещать на значительное расстояние бетонные тетраэдры, железные и железобетонные ежи и надолбы системы противодесантных заграждений.

При подводных ядерных взрывах среднего и крупного диапазонов мощности на дне акватории глубиной несколько десятков метров гравитационные волны повреждают гидротехнические сооружения и противодесантные заграждения на расстоянии от эпицентра взрыва, равном соответственно 3-7 и 3-4 км.

Этот взрыв имеет внешнее сходство с наземным ядерным взрывом и сопровождается теми же поражающими факторами, что и наземный взрыв. Разница заключается в том, что грибовидное облако надводного взрыва состоит из плотного радиоактивного тумана или водяной пыли.

Характерным для этого вида взрыва является образование поверхностных волн. Действие светового излучения значительно ослабляется вследствие экранирования большой массой водяного пара. Выход из строя объектов определяется в основном действием воздушной ударной волны. Радиоактивное заражение акватории, местности и объектов происходит вследствие выпадения радиоактивных частиц из облака взрыва. Надводные ядерные взрывы могут осуществляться для поражения крупных надводных кораблей и прочных сооружений военно-морских баз, портов, когда допустимо или желательно сильное радиоактивное заражение воды и прибрежной местности.

Подводный ядерный взрыв.

Подводным ядерным взрывом называется взрыв, осуществленный в воде на той или иной глубине. При таком взрыве вспышка и светящаяся область, как правило, не видны. При подводном взрыве на небольшой глубине над поверхностью воды поднимается полый столб воды, достигающий высоты более километра. В верхней части столба образуется облако, состоящее из брызг и паров воды. Это облако может достигать несколько километров в диаметре. Через несколько секунд после взрыва водяной столб начинает разрушаться и у его основания образуется облако, называемое базисной волной. Базисная волна состоит из радиоактивного тумана; она быстро распространяется во все стороны от эпицентра взрыва, одновременно поднимается вверх и относится ветром. Спустя несколько, минут базисная волна смешивается с облаком султана (султан - клубящееся облако, окутывающее верхнею часть водяного столба) и превращается в слоисто-кучевое облако, из которого выпадает радиоактивный дождь. В воде образуется ударная волна, а на ее поверхности - поверхностные волны, распространяющиеся во все стороны. Высота волн может достигать десятков метров. Подводные ядерные взрывы предназначены для уничтожения кораблей и разрушений подводной части сооружений. Кроме того, они могут осуществляться для сильного радиоактивного заражения кораблей и береговой полосы.

С явлениями, происходящими при подводных взрывах, связан очень широкий круг задач, в которых участвуют неустановившиеся движения. Мы начинаем с рассмотрения двух вполне классических задач.

Схлопывание пузыря. Одним из первых вопросов, возникающих при изучении взрыва под водой, является вопрос о том, как изменяется с течением времени образовавшийся при взрыве газовый пузырь, который заполнен продуктами детонации ВВ.

В простейшей приближенной постановке задачу можно сформулировать так. Пусть сферический газовый пузырь переменного радиуса находится в безграничной несжимаемой жидкости с плотностью 1 и постоянным давлением Силой тяжести, вязкостью, а также поверхностным натяжением и конденсацией газов в пузыре мы пренебрегаем. Требуется найти закон изменения радиуса

Скорость движения жидкости, вызванного изменением радиуса пузыря, в данный момент времени зависит лишь от расстояния рассматриваемой точки от центра пузыря и равна Сравнивая расходы на границе пузыря и концентрической с ней сфере радиуса мы найдем

где некоторая функция времени. Это соотношение позволяет вычислить кинетическую энергию всей массы жидкости в момент

Будем считать, что в начальный момент жидкость находится в покое, пусть еще разность между давлением в жидкости и давлением газа внутри пузыря равна в силу наших предложений это - постоянная величина. Если не учитывать поверхностное натяжение, то

(знак минус объясняется тем, что у нас откуда интегрированием находим

Сравнивая это выражение с (2), получаем дифференциальное уравнение с разделяющимися переменными

а его интегрирование приводит к соотношению

из которого можно найти искомую зависимость

Из уравнения (4) следует, что при скорость R неограниченно возрастает как Это отражает тот факт, что в момент исчезания пузыря происходит гидравлический удар - мы имеем пример глобальной особенности, о которой говорилось выше. Описанный эффект называется охлопыванием пузыря.

Полагая в (5) мы находим время схлопывания:

Можно еще рассматривать пульсирующий пузырь, который после схлопывания расширяется до начальной величины. Последняя формула позволяет определить период колебаний такого пузыря:

Отметим, что в точной постановке задачи о движении газового пузыря, образовавшегося при подводном взрыве, следует учитывать влияние поверхности воды и силы тяжести, а давление в пузыре считать меняющимся по закону:

где объем пузыря в момент времени постоянные. Массой газа внутри пузыря и силами поверхностного натяжения можно пренебречь. В этой постановке в начальный момент поверхность воды можно считать плоской, а границу газового пузыря - сферой; дальнейшее изменение формы этих поверхностей находится из решения задачи.

Решение задачи о движении газового пузыря в такой точной постановке для начального этапа получил недавно Л. В. Овсянников . О дальнейших этапах движения мы будем говорить ниже при обсуждении проблемы султана.

Шары Бьёркнесов. Пусть в безграничной жидкости, которую мы по-прежнему предполагаем несжимаемой (с плотностью 1) и невесомой, пульсируют два воздушных или газовых пузыря.

Еще в прошлом веке отец и сын Бьеркнесы обнаружили и объяснили интересное явление, связанное с этим экспериментом - оказывается, что если пузыри пульсируют в одинаковой фазе, то они притягиваются друг к другу, а если в противофазе, то отталкиваются.

Для объяснения этого явления нам понадобится следующий элементарный факт - шар, движущийся поступательно в безграничной жидкости, можно имитировать точечным диполем, расположенным в центре шара. В самом деле, пусть шар радиуса R движется со скоростью вдоль оси х. Потенциал скоростей этого движения представляет собой гармоническую вне шара функцию равную 0 на бесконечности и на поверхности шара удовлетворяющую условию (нормальная составляющая скорости, и 0 - цилиндрические координаты, см. рис. 101). Этим условиям, очевидно,

удовлетворяет функция а решение задачи единственно, следовательно, она и является искомым потенциалом. Мы видим, что вне шара она совпадает с потенциалом скоростей диполя, расположенного в начале координат: причем

Переходя к описанию явления Бьёркнесов, заменим пузыри точечными источниками интенсивностей расположенными соответственно в точках оси х, причем если пузыри пульсируют в одинаковой фазе, и если они пульсируют в противофазе. Чтобы учесть возможность перемещения центров пузырей, будем еще считать, что в тех же точках помещены диполи. Так как пузыри равноправны, достаточно изучить движение одного из них, скажем, того, который пульсирует в окрестности начала. Радиусы пузырей мы будем считать малыми в сравнении с а.

Если пренебречь влиянием диполя, расположенного в точке , то в точке М, близкой к началу координат, потенциал поля скоростей запишется в виде

где I - расстояние точки М до второго источника, а момент диполя (рис. 101). У нас и вблизи начала Поэтому (9) можно приближенно переписать в виде

или, если отбросить несущественное постоянное (при фиксированном слагаемое, в виде

Здесь первое слагаемое дает потенциал источника, расположенного в начале координат, второе -

потенциал другого источника (приближенно) и третье - потенциал диполя. Если обозначить через радиус пузыря, пульсирующего в окрестности начала, то скорость его изменения (которая определяется первым слагаемым) а поступательная скорость пузыря определяется третьим слагаемым; знак плюс объясняется тем, что речь идет о скорости пузыря, а не жидкости).

Воспользуемся теперь тем, что в силу нашего предположения о невесомости суммарное давление на пузырь должно быть равным нулю. По интегралу Коши давление в точке, близкой к началу,

При интегрировании по граничной сфере иузыря члены, не зависящие от 0 или пропорциональные сокращаются вследствие симметрии, поэтому ненулевой вклад в суммарное давление могут дать лишь члены

Условие обращения в нуль суммарного давления приводит, следовательно, к равенству

справедливому в любой момент времени

Остается учесть, что за полный период пульсирования пузыря суммарные эффекты изменения равны нулю. Но тогда, как видно из (12), суммарный эффект изменения за период величины а значит, и по знаку противоположен знаку Так как

поступательная скорость центра пузыря и то мы заключаем, что приращение за период пульсирования отрицательно при и положительно при Это и объясняет явление Бьёркнесов.

Отметим еще один вариант этого же явления. Как известно, влияние на источник твердой стенки в точности эквивалентно влиянию на него другого источника той же интенсивности, расположенного зеркально симметрично с первым источником относительно стенки.

Точно так же действие на источник свободной поверхности можно заменить действием симметричного источника, интенсивность которого противоположна по знаку интенсивности первого источника.

Рис. 102. (см. скан)

Поэтому приведенный выше анализ объясняет еще и следующий экспериментально наблюдаемый факт: газовый пузырь, пульсирующий в воде вблизи от твердой стенки, притягивается к стенке, а пузырек, который пульсирует вблизи свободной поверхности, отталкивается от нее.

Переходим к новым задачам.

Парадокс при подводном взрыве. Пусть в воду частично погружен полый цилиндр с толстыми (в 20 - 30 мм) стенками и тонким (в 1-3 мм) дном из железа или меди (рис. 102, а). При фиксированной глубине погружения Н на расстоянии h от дна цилиндра на его оси помещается заряд ВВ и производится подрыв. Для каждого h подбирается минимальный вес заряда, при котором дно разрушается.

Естественно ожидать, что функция строго возрастает, однако в многочисленных опытах наблюдался следующий парадоксальный факт: функция F строго возрастает, пока h не достигнет некоторого значения после этого на участке в два-три раза больше она остается практически постоянной; при величина F снова возрастает (рис. 102, б). Изменяется и характер разрушения дна - при дно прорывается на большой площади, а при прорыв резко локализован.

Приведем качественное объяснение этого парадокса. Опыты показывают, что эффект подводного взрыва ВВ делится на две стадии. На первой стадии, сразу после подрыва, продукты взрыва образуют газовый пузырь. От него прежде всего отходит ударная волна, которая уносит около половины энергии взрыва, а затем происходит нарастание скоростей жидкости и диаметр газового пузыря быстро увеличивается.

Если в конце этой стадии прорыва дна и выхода газов в атмосферу не произойдет, то наступает вторая стадия.

Газовый пузырь под действием атмосферного давления начнет сжиматься, удаляясь от дна цилиндра. Задачу о сжатии газового пузыря в воде мы рассматривали выше; следует только иметь в виду, что на практике форма его не сферическая, а грушевидная с расширением книзу. С течением времени пузырь сплющивается, образуя шапку с выемкой внизу, и потому схлопывание пузыря происходит на нижней его поверхности. Возникающий в момент схлопывания гидравлический удар приводит к струе, которая идет назад, к дну цилиндра (рис. 103). Эта струя имеет кумулятивный характер, энергия в ней сравнима с энергией пузыря на

первой стадии. При определенном весе F заряда струя пробивает небольшое отверстие в дне цилиндра.

Для прорыва на первой стадии процесса характерно строгое возрастание функции на второй стадии пробивная сила мало зависит от расстояния. Таким образом, качественную картину явления можно считать достаточно ясной, но сколько-нибудь полный количественный расчет пока еще не проведен.

Сферическая кумуляция. В предыдущей главе мы рассматривали движение кумулятивных струй как установившееся. Между тем большой интерес представляет также и процесс формирования струй, который является существенно неустановившимся.

Для простоты рассмотрим случай сферической кумуляции, где предполагается, что в начальный момент жидкость занимает нижнее полупространство с выемкой в форме полушара. Кроме того, считается, что при жидкость мгновенно становится тяжелой, а потенциальная функция и скорость частиц на свободной поверхности равны нулю.

Задача сводится к отысканию функции гармонической по пространственным координатам в переменной области равной 0 в бесконечности, а на границе (свободной поверхности жидкости) удовлетворяющей условию

которое с учетом соотношения

можно переписать виде

Приближенное решение этой задачи в плоском варианте можно получить методом

электрогидродинамических аналогий (ЭГДА) при помощи электропроводящей бумаги. Для этого нужно записать разностный аналог условия (13); если обозначить через индекс точки на свободной поверхности жидкости и через индекс шага по времени, то мы будем иметь

В начальный момент получаем распределение Ф на известной свободной поверхности:

Реализуя эти граничные условия на электропроводящей бумаге, мы сможем построить линии равного потенциала, а затем и линии тока для выбранных точек свободной поверхности. Далее можно найти скорости жидкости в этих точках, построить свободную поверхность в момент времени с индексом и по (14) найти новое распределение потенциала на этой поверхности. Это распределение снова реализуется на электропроводящей бумаге и процесс продолжается.

На рис. 104 изображена последовательная картина формирования кумулятивной струи под действием силы тяжести для моментов времени

Результаты получены В. Кедринским описанным выше методом.

На рис. 105 изображены кадры киносъемки повторения опыта Покровского (§ 29). Пробирка с водой, свободной поверхности которой придана сферическая форма при помощи стеклянного мениска (виден на первом кадре), бросается в вертикальном положении на стол. В момент удара жидкость мгновенно становится тяжелой, так что этот опыт можно рассматривать в связи

(кликните для просмотра скана)

с указанными выше расчетами по сферической кумуляции. Под кадрами на рис. 105 указано время, прошедшее с момента удара.

Проблема султана. При некоторых условиях в результате подводного взрыва наблюдается интересное явление, которое получило название «султан» - над свободной поверхностью на большую высоту в виде узкого конуса выбрасывается вода (рис. 106). Отмечено, что

это явление характерно для жидкой среды и не наблюдается при подземных взрывах.

Укажем на некоторые особенности подводного взрыва. В предыдущем разделе мы уже говорили о двух этапах развития такого взрыва. Первый, очень короткий, этап характеризуется созданием ударной волны, на что уходит около половины всей энергии взрыва. В рассматриваемой здесь задаче волна выходит на свободную поверхность и откалывает некоторую массу воды. Отколотая масса распадается на большое число мелких брызг, каждая с небольшой энергией, а на свободной поверхности образуется воронка в форме впадины.

Второй этап связан с эволюцией газового пузыря, образовавшегося при взрыве, который тоже несет около половины энергии. Эта эволюция, как мы говорили, приводит к схлопыванию и образованию струи, которая (при надлежащих условиях взрыва, т. е. глубине заряда и его весе) выходит на свободную поверхность в момент, когда там образовалась воронка. На этом этапе можно пользоваться моделью потенциального течения несжимаемой жидкости - мы приходим к задаче определения поля скоростей, ортогонального поверхности воронки (задача о сферической кумуляции, о которой только что говорилось). В результате из воронки вырывается

кумулятивная струя, которая и дает султан - всплеск с довольно большой энергией.

Очень похожее явление (но, конечно, со значительно меньшей энергией) наблюдается при выстреле в воду пулей в направлении, перпендикулярном свободной поверхности (рис. 107). Другое проявление того же эффекта можно наблюдать, когда на спокойную воду падает редкий прямой дождь-поверхность воды покрывается тогда небольшими фонтанчиками, которые поднимаются навстречу дождю.

Качественное объяснение этих явлений ясно из рис.

108, где показаны три последовательные фазы входа вводу пули (или дождевой капли): сначала поверхность воды немного прогибается вниз (фаза а), затем падающее тело погружается в воду и за ним образуется полость (фаза б) и, наконец, кинетическая энергия тела идет на схлопывание полости. В результате этого схлопывания и возникает встречная струя, имеющая кумулятивный характер (фаза в).

Это объяснение подтверждается модификацией опыта - если стрелять пулей в воду не перпендикулярно к поверхности, а под некоторым углом, то после выстрела образуется наклонный султан в направлении навстречу движению пули (рис. 109). Здесь прогиб поверхности воды в фазе а будет несимметричным, полость в фазе будет двигаться в направлении полета пули, и кумулятивная струя в заключительной фазе пойдет не перпендикулярно к поверхности воды, а навстречу движению полости!

Взрыв в воздухе. Характерное отличие взрыва в воздухе от взрыва в воде состоит в том, что здесь основная часть энергии переходит в ударную волну. Исследования по распространению ударных волн в воздухе приобретают основное значение. До сих пор при проведении больших взрывных работ инженеры сталкиваются с непонятными явлениями - иногда действие ударной волны оказывается во много раз больше, а иногда во много раз меньше, чем то, которое было вычислено по хорошо проверенным формулам. Как правило, такие отклонения вызываются аномалиями в атмосфере, ибо как скорость акустической, так и скорость ударной волны зависит от состояния атмосферы (плотность, температура, влажность). Неоднородность атмосферы меняет фронт ударной волны - она. может уйти вверх, а может и прижаться к земле.

Как в воде, в воздухе могут создаваться своеобразные «волноводы», когда в некотором направлении затухание волн оказывается существенно меньше обычного (об этом явлении мы будем говорить ниже, в § 34).

Около лет назад среди гидродинамиков возникли острые споры по следующему вопросу. Пусть сферический заряд ВВ без оболочки в момент взрыва (в воздухе) имеет скорость V такую, что кинетическая энергия соизмерима с потенциальной энергией Е заряда или существенно больше ее; спрашивается, как скорость изменит эффект взрыва?

В споре были высказаны две крайние точки зрения: по одной скорость заряда в момент взрыва практически не должна влиять на эффект, параметры ударной волны могут измениться лишь на несколько процентов. По мнению других, скорость может увеличить эффект взрыва примерно в десять раз.

Решение этого спора оказалось довольно простым. Надо расчленить явление на два этапа - выделение энергии взрыва и формирование ударной волны. На первом этапе, в соответствии с точкой зрения одной из спорящих групп, скорость заряда практического влияния не оказывает, вся потенциальная энергия ВВ переходит в кинетическую энергию разлетающихся частиц продуктов взрыва. На втором этапе необходимо рассмотреть газовое облако, скорости частиц которого составлены из радиальной скорости (от центра заряда) и из поступательной скорости самого заряда.

Подсчеты и опыты показали, что эффект движущегося заряда (на достаточно большом расстоянии от места взрыва) эквивалентен эффекту неподвижного заряда с потенциальной энергией, равной сумме - потенциальной энергии ВВ и кинетической энергии заряда в момент взрыва. При этом нужно еще считать, что приведенный центр взрыва отнесен от фактического центра взрыва в направлении движения заряда на расстояние, определяемое кинетическои энергией и потенциальной энергией Е.

Включайся в дискуссию
Читайте также
Суп-пюре из свеклы и яблока со сливками с хреном Свекольный крем суп
Салат грибное лукошко с опятами, рецепт приготовления
К чему снится музей по соннику