Подпишись и читай
самые интересные
статьи первым!

2 назвать способы задания плоскостей. Способы задания плоскости


В планиметрии плоскость является одной из основных фигур, поэтому, очень важно иметь ясное представление о ней. Эта статья создана с целью раскрытия этой темы. Сначала дано понятие плоскости, ее графическое представление и показаны обозначения плоскостей. Далее плоскость рассматривается вместе с точкой, прямой или другой плоскостью, при этом возникают варианты из взаимного расположения в пространстве. Во втором и третьем и четвертом пункте статьи как раз разобраны все варианты взаимного расположения двух плоскостей, прямой и плоскости, а также точки и плоскости, приведены основные аксиомы и графические иллюстрации. В заключении даны основные способы задания плоскости в пространстве.

Навигация по странице.

Плоскость – основные понятия, обозначения и изображение.

Простейшими и основными геометрическими фигурами в трехмерном пространстве являются точка, прямая и плоскость. Мы уже имеем представление о точке и прямой на плоскости . Если поместить плоскость, на которой изображены точки и прямые, в трехмерное пространство, то мы получим точки и прямые в пространстве. Представление о плоскости в пространстве позволяет получить, к примеру, поверхность стола или стены. Однако, стол или стена имеют конечные размеры, а плоскость простирается за их границы в бесконечность.

Точки и прямые в пространстве обозначаются также как и на плоскости – большими и маленькими латинскими буквами соответственно. Например, точки А и Q , прямые а и d . Если заданы две точки, лежащие на прямой, то прямую можно обозначить двумя буквами, соответствующими этим точкам. К примеру, прямая АВ или ВА проходит через точки А и В . Плоскости принято обозначать маленькими греческими буквами, например, плоскости , или .

При решении задач возникает необходимость изображать плоскости на чертеже. Плоскость обычно изображают в виде параллелограмма или произвольной простой замкнутой области.

Плоскость обычно рассматривается вместе с точками, прямыми или другими плоскостями, при этом возникают различные варианты их взаимного расположения. Переходим к их описанию.

Взаимное расположение плоскости и точки.

Начнем с аксиомы: в каждой плоскости имеются точки. Из нее следует первый вариант взаимного расположения плоскости и точки – точка может принадлежать плоскости. Другими словами, плоскость может проходить через точку. Для обозначения принадлежности какой-либо точки какой-либо плоскости используют символ «». Например, если плоскость проходит через точку А , то можно кратко записать .

Следует понимать, что на заданной плоскости в пространстве имеется бесконечно много точек.

Следующая аксиома показывает, сколько точек в пространстве необходимо отметить, чтобы они определяли конкретную плоскость: через три точки, не лежащие на одной прямой, проходит плоскость, причем только одна. Если известны три точки, лежащие в плоскости, то плоскость можно обозначить тремя буквами, соответствующими этим точкам. Например, если плоскость проходит через точки А , В и С , то ее можно обозначить АВС .

Сформулируем еще одну аксиому, которая дает второй вариант взаимного расположения плоскости и точки: имеются по крайней мере четыре точки, не лежащие в одной плоскости. Итак, точка пространства может не принадлежать плоскости. Действительно, в силу предыдущей аксиомы через три точки пространства проходит плоскость, а четвертая точка может как лежать на этой плоскости, так и не лежать. При краткой записи используют символ «», который равносилен фразе «не принадлежит».

К примеру, если точка А не лежит в плоскости , то используют краткую запись .

Прямая и плоскость в пространстве.

Во-первых, прямая может лежать в плоскости. В этом случае, в плоскости лежат хотя бы две точки этой прямой. Это устанавливается аксиомой: если две точки прямой лежат в плоскости, то все точки этой прямой лежат в плоскости. Для краткой записи принадлежности некоторой прямой данной плоскости пользуются символом «». Например, запись означает, что прямая а лежит в плоскости .

Во-вторых, прямая может пересекать плоскость. При этом прямая и плоскость имеют одну единственную общую точку, которую называют точкой пересечения прямой и плоскости. При краткой записи пересечение обозначаю символом «». К примеру, запись означает, что прямая а пересекает плоскость в точке М . При пересечении плоскости некоторой прямой возникает понятие угла между прямой и плоскостью .

Отдельно стоит остановиться на прямой, которая пересекает плоскость и перпендикулярна любой прямой, лежащей в этой плоскости. Такую прямую называют перпендикулярной к плоскости. Для краткой записи перпендикулярности используют симовл «». Для более глубокого изучения материала можете обратиться к статье перпендикулярность прямой и плоскости .

Особую значимость при решении задач, связанных с плоскостью, имеет так называемый нормальный вектор плоскости . Нормальным вектором плоскости является любой ненулевой вектор, лежащий на прямой, перпендикулярной этой плоскости.

В-третьих, прямая может быть параллельна плоскости, то есть, не иметь в ней общих точек. При краткой записи параллельности используют символ «». Например, если прямая а параллельна плоскости , то можно записать . Рекомендуем подробнее изучить этот случай, обратившись к статье параллельность прямой и плоскости .

Следует сказать, что прямая, лежащая в плоскости, делит эту плоскость на две полуплоскости. Прямая в этом случае называется границей полуплоскостей. Любые две точки одной полуплоскости лежат по одну сторону от прямой, а две точки разных полуплоскостей лежат по разные стороны от граничной прямой.

Взаимное расположение плоскостей.

Две плоскости в пространстве могут совпадать. В этом случае они имеют, по крайней мере, три общие точки.

Две плоскости в пространстве могут пересекаться. Пересечением двух плоскостей является прямая линия, что устанавливается аксиомой: если две плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей.

В этом случае возникает понятие угла между пересекающимися плоскостями . Отдельный интерес представляет случай, когда угол между плоскостями равен девяноста градусам. Такие плоскости называют перпендикулярными. О них мы поговорили в статье перпендикулярность плоскостей .

Наконец, две плоскости в пространстве могут быть параллельными, то есть, не иметь общих точек. Рекомендуем ознакомиться со статьей параллельность плоскостей , чтобы получить полное представление об этом варианте взаимного расположения плоскостей.

Способы задания плоскости.

Сейчас мы перечислим основные способы задания конкретной плоскости в пространстве.

Во-первых, плоскость можно задать, зафиксировав три не лежащие на одной прямой точки пространства. Этот способ основан на аксиоме: через любые три точки, не лежащие на одной прямой, проходит единственная плоскость.

Если в трехмерном пространстве зафиксирована и задана плоскость с помощью указания координат трех ее различных точек, не лежащих на одной прямой, то мы можем написать уравнение плоскости, проходящей через три заданные точки .

Два следующих способа задания плоскости являются следствием из предыдущего. Они основаны на следствиях из аксиомы о плоскости, проходящей через три точки:

  • через прямую и не лежащую на ней точку проходит плоскость, притом только одна (смотрите также статью уравнение плоскости, проходящей через прямую и точку);
  • через две пересекающиеся прямые проходит единственная плоскость (рекомендуем ознакомиться с материалом статьи уравнение плоскости, проходящей через две пересекающиеся прямые).

Четвертый способ задания плоскости в пространстве основан на определении параллельных прямых . Напомним, что две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются. Таким образом, указав две параллельные прямые в пространстве, мы определим единственную плоскость, в которой эти прямые лежат.

Если в трехмерном пространстве относительно прямоугольной системы координат задана плоскость указанным способом, то мы можем составить уравнение плоскости, проходящей через две параллельные прямые .


В курсе средней школы на уроках геометрии доказывается следующая теорема: через фиксированную точку пространства проходит единственная плоскость, перпендикулярная к данной прямой. Таким образом, мы можем задать плоскость, если укажем точку, через которую она проходит, и прямую, перпендикулярную к ней.

Если в трехмерном пространстве зафиксирована прямоугольная система координат и задана плоскость указанным способом, то можно составить уравнение плоскости, проходящей через заданную точку перпендикулярно к заданной прямой .

Вместо прямой, перпендикулярной к плоскости, можно указать один из нормальных векторов этой плоскости. В этом случае есть возможность написать

Введение

Из курса планиметрии мы знаем, что плоскость - это множество, элементами которого являются точки и в котором выполняется система аксиом планиметрии, описывающая свойства точек и прямы.

Пространство - это множество, элементами которого являются точки и в котором выполняется система аксиом стереометрии, описывающая свойства точек, прямых и плоскостей. Система аксиом стереометрии дает описание свойств пространства и основных его элементов. Понятия «точка», «прямая» и «плоскость» принимаются без определений: их описание и свойства содержатся в аксиомах. С другой стороны, понятия «точка», «прямая», «плоскость» имеют наглядный смысл, отраженный на чертежах и рисунках.

Изучение пространства приводит к необходимости расширить систему аксиом планиметрии и рассмотреть новую группу аксиом, в которых выражены свойства взаимного расположения точек, прямых и плоскостей, что особенно важно для нас, в пространстве.

Цель реферата - получить наглядное представление о пространстве и способах расположения плоскостей в пространстве.

Для выполнения этой цели поставлены следующие задачи:

  • - рассмотреть способы задания плоскостей в пространстве,
  • - рассмотреть основные аксиомы стереометрии;
  • - изучить возможные варианты взаимного расположения плоскостей в пространстве,
  • - сформулировать основные признаки и свойства взаимного расположения плоскостей в пространстве;

Способы задания плоскости

Изучение пространства приводит к необходимости расширить систему аксиом.

Рассмотрим аксиому R1. В пространстве существуют плоскости. В каждой плоскости пространства выполняются все аксиомы планиметрии. Эта аксиома дает нам право рассматривать в любой плоскости пространства отрезки, прямые со всеми их свойствами, которые изучались в планиметрии. Например, если прямая а и не принадлежащая ей точка М лежат в некоторой плоскости б, то в этой плоскости можно провести через точку М прямую, параллельную прямой а, и притом только одну.

В аксиоме R3 говорится: какова бы не была плоскость, существуют точки, принадлежащие этой плоскости, и точки, не принадлежащие ей. Данной аксиомой утверждается, что для любой плоскости в пространстве можно выбрать любое количество точек в этой плоскости, равно как и сколько угодно точек вне её. В случае, если точка А л7+ежит в (принадлежит) плоскости б, то записывают: А б и говорят, что плоскость б проходит через точку А. Если точка А не принадлежит плоскости б, то записывают: А б и говорят, что плоскость б не проходит через точку А.

Плоскость в пространстве однозначно определяется:

Тремя точками, не лежащими на прямой. Аксиома R2 (аксиома плоскости) гласит: Через любые три точки, не принадлежащие одной прямой, можно провести плоскость, и притом только одну. Плоскость, которая проходит через точки А, В и С, не принадлежащие одной прямой (С АВ), обозначается символически (АВС); если этой плоскостью является плоскость б, то пишут б = (АВС) или (АВС)= б. Стол, имеющий три ножки, не может качаться на плоском полу. Его устойчивость объясняется тем, что концы трех его ножек (три точки) принадлежат одной плоскости - плоскости пола, но не принадлежат одной прямой. Плохо сделанный стол на четырех ножках качается на плоском полу, и под одну из его ножек что-нибудь стараются подложить.

Прямой и точкой, не лежащей на прямой.

По теореме 1 через любую прямую и не принадлежащую ей точку можно провести плоскость, и притом только одну.

Теорема 2. Через любые две пересекающиеся прямые можно провести плоскость, и притом только одну.

Если прямая проходит через две точки плоскости, то она лежит в этой плоскости

Теорема 3. Через две параллельные прямые можно провести единственную плоскость.

Положение плоскости в пространстве может быть определено на чертеже одним из следующих способов:

1. Тремя точками, не лежащими на одной прямой (рис. 35 ).

2. Прямой и точкой, не лежащей на этой прямой (рис. 36 ).

3. Двумя пересекающимися прямыми (рис. 37) .

4. Двумя параллельными прямыми (рис. 38 ).

5. Плоской фигурой (рис. 39 ).

6. Следами (рис. 40, 41 ).

7. Параметрами плоскости.

Следы плоскости

Следом плоскости называется линия пересечения плоскости с плоскостью проекций. След плоскости обозначается той же буквой, что и плоскость с подстрочным знаком, соответствующим имени плоскости проекций, с которой пересекается данная. Если плоскость (назовем ее P ) не параллельна, какой-либо плоскости проекций, то она пересекает все три плоскости проекций и, следовательно, имеет три следа – горизонтальный P H , фронтальный P V и профильный P W (рис. 40, 41 ). Как и любая прямая, любой след плоскости имеет три проекции, но, для облегчения чтения эпюра, принято обозначать только ту проекцию следа, которая не совпадает с осью проекций. Положение любого следа плоскости, как и любой прямой, определяется положением двух ее точек. Для следов плоскости такими точками могут являться точки, называемые точками схода следов , то есть точки, в которых плоскость пересекает оси координат – P x , P y , P z . Численные значения координат x , y , и z точек схода следов называются параметрами плоскости .

Положение плоскости в пространстве определяется тремя точками, не лежащими на одной прямой, прямой и точкой, взятой вне прямой, двумя пересекающимися прямыми и двумя параллельными прямыми. Соответственно плоскость на чертеже (рис. 3.1) может быть задана проекциями трех точек, не лежащих на одной прямой (а), прямой и точки, взятой вне прямой (б), двух пересекающихся прямых (в), двух параллельных прямых (г). Проекции любой плоской фигуры также могут служить заданием плоскости на чертеже; например, см. на рис. 3.10 изображение плоскости проекциями треугольника.

Положение плоскости относительно плоскостей проекций

Плоскость относительно плоскостей проекций может занимать следующие положения: 1) не перпендикулярно к плоскостям проекций; 2) перпендикулярно к одной плоскости проекций; 3) перпендикулярно к двум плоскостям проекций.

Плоскость, не перпендикулярную ни к одной из плоскостей проекций, называют плоскостью общего положения (см. рис. 3.1).

Второе и третье положения плоскостей являются частными случаями. Плоскости в этих положениях называют проецирующими плоскостями.

Плоскость, перпендикулярная одной плоскости проекций. Наглядное изображение плоскости а, заданной треугольником ABC и перпендикулярной плоскости ∏!, приведено на рис. 3.2, ее чертеж – на рис. 3.3. Такую плоскость называют горизонтально проецирующей .

Наглядное изображение плоскости β, заданной параллелограммом ABCD , перпендикулярной фронтальной плоскости проекций, приведено на рис. 3.4, ее чертеж – на рис. 3.5. Такую плоскость называют фронтально проецирующей .

Чертеж плоскости в виде треугольника с проекциями А "В"С" А "В"С", A ""B tnC"", перпендикулярной профильной плоскости проекций, показан на рис. 3.6. Такую плоскость называют профильно-проецирующей.

Следы плоскостей. Линию пересечения плоскости с плоскостью проекций называют следом . Линия пересечения некоторой плоско-

сти а, заданной треугольником АВС, с плоскостью π, обозначена a", a с плоскостью π2 – а" (см. рис. 3.2).

Линию пересечения плоскости с плоскостью π, называют горизонтальным следом, с плоскостью π2 – фронтальным следом, с плоскостью π, – профильным следом.

Для плоскости а, перпендикулярной плоскости π, горизонтальный след а" (см. рис. 3.2,3.3) располагается под углом к оси х, соответствующем углу наклона этой плоскости к фронтальной плоскости проекций, а фронтальный след а" – перпендикулярно оси х.

Аналогично для некоторой плоскости β, перпендикулярной плоскости π2 (см. рис. 3.4,3.5), фронтальный след β" располагается под углом к оси х, соответствующему углу наклона этой плоскости к плоскости ∏), а горизонтальный след β" – перпендикулярно оси х.

На чертежах тот след, который перпендикулярен оси проекций, обычно, когда она не участвует в построениях, не изображают.

Свойство проекций геометрических элементов, лежащих в проецирующих плоскостях (см. § 1.1, ∏. 1, в). Проецирующая плоскость изображается прямой

линией на той плоскости проекций, к которой она перпендикулярна. Следовательно, и любая замкнутая геометрическая фигура, лежащая в проецирующей плоскости, проецируется на эту плоскость проекций в отрезок прямой линии.

Плоскости, перпендикулярные двум плоскостям проекций. Если плоскость перпендикулярна двум плоскостям проекций, то она параллельна третьей плоскости проекций. Такую плоскость называют горизонтальной (параллельная плоскости π,), фронтальной (параллельная плоскости π2) и профильной (параллельная плоскости π3).

Примеры их наглядных изображений и чертежей приведены на рис. 3.7, а, б (фронтальная плоскость у и принадлежащая ей точка А), на рис. 3.8, а, б (горизонтальная плоскость β и принадлежащая ей точка В), на рис. 3.9, а, б (профильная плоскость а и принадлежащая ей точка Q.

Способы задания плоскости, определяющие однозначно положение плоскости в пространстве (см. рис. 16):

а) три точки, не лежащие на одной прямой;

б) прямая и точка вне прямой;

с) параллельные прямые;

d) пересекающиеся прямые.

е) плоская фигура;

На эпюре плоскость задается проекциями перечисленных геометрических элементов и следами. Эти элементы носят название определителя плоскости (∆).

Плоскость в пространстве может быть задана следами (см. рис. 17). Следом плоскости называют линию пересечения данной плоскости с плоскостью проекций. В системе трех плоскостей проекций плоскость общего положения p (не перпендикулярная и не параллельная плоскостям проекций) может иметь три следа – горизонтальный (р 1 ), фронтальный (р 2 ), профильный (р 3 ); Рх, Ру,Рz - точки схода следов (рис. 17)

3.2. Плоскости частного положения.

К плоскостям частного положения относятся:

    Проецирующие плоскости, т.е. плоскости, перпендикулярные к одной из плоскостей проекций (рис. 18);

    Плоскости уровня – плоскости, параллельные одной из плоскостей проекций (рис. 19).

3.3. Проецирующие плоскости

Особенности проецирующих плоскостей:

1. Одна проекция любого элемента, расположенного в проецирующей плоскости, совпадает с соответствующим следом этой плоскости;

2. На эпюре угол наклона заданной плоскости к плоскости проекций проецируется в истинную величину (рис. 18).

3.4. Плоскости уровня

Особенностью плоскостей уровня является то, что любая плоская фигура, расположенная в такой плоскости, проецируется на параллельную ей плоскость без искажения, т.е. в истинную величину (рис. 19).

Для построения элементов, находящихся в плоскости общего положения, нужно руководствоваться двумя правилами:

    Прямая линия принадлежит плоскости, если она проходит через две точки, лежащие в плоскости или если она проходит через точку, лежащую в плоскости и параллельно другой прямой, расположенной в этой плоскости (рис. 20);

    Точка лежит в плоскости, если она лежит на прямой, расположенной в этой плоскости (рис. 21).

3.6. Главные линии плоскости.

Горизонталь (h ) - прямая лежащая в плоскости и одновременно расположенная параллельно плоскости П 1 (рис 22). Фронталь (f ) - прямая лежащая в плоскости и параллельная плоскости П 2 . Линия наибольшего наклона - это прямая лежащая в плоскости и перпендикулярная или горизонталям или фронталям плоскости. С помощью линии наибольшего наклона определяется угол наклона плоскости к плоскостям проекций. Линия наибольшего наклона расположенная перпендикулярно горизонталям плоскости называется еще линией ската плоскости (ВК рис 22).

С помощью линии ската определяется угол наклона плоскости АВС к горизонтальной плоскости проекций. Для этого необходимо способом прямоугольного треугольника определить ее натуральную величину и угол между натуральной величиной и горизонтальной проекцией будет искомый угол.

3.7. Вопросы для самопроверки.

    Перечислите и изобразите графические способы задания плоскости на комплексном чертеже.

    Что понимают под следом плоскости?

    Какую плоскость называют проецирующей и каковы ее графические признаки на чертеже?

    Дайте графические характеристики плоскостям: горизонтально - проецирующей, фронтально – проецирующей, профильно – проецирующей.

    Какую плоскость называют плоскостью уровня?

    Какую плоскость называют горизонтальной? Фронтальной? Профильной? Изобразите их на чертеже.

    Назовите признаки принадлежности прямой плоскости, точки плоскости.

    Покажите на чертеже, как можно прямую заключить в плоскость.

    Назовите главные линии плоскости.

    Как определить угол наклона плоскости к горизонтальной плоскости проекций?

Включайся в дискуссию
Читайте также
Знаменитые жены турецких султанов: Баффо Османские правители по порядку и их жены
Инструкция по охране труда для административного персонала и специалистов (офисных работников)
Биография Генетическая экспертиза и похороны сердца