Подпишись и читай
самые интересные
статьи первым!

Фенольные соединения. Фенольные соединения, их характеристика и распространенность в природе Фенольные соединения классификация

text_fields

text_fields

arrow_upward

Простые фенольные соединения — это соединения с одним бензольным кольцом, имеющие структуру С 6 , С 6 -С 1 , С 6 -С 2 , С 6 -С 3 . Простейшие фенольные соединения с одним бензольным кольцом и одной или несколькими гидроксильными группами в растениях встречаются редко, чаще они находятся в связанном виде (в форме гликозидов или сложных эфиров) или же являются структурными единицами более сложных соединений. Наиболее широко в растениях представлены фенологликозиды – соединения, в которых гидроксильная группа связана с сахаром. Классификация простых фенольных соединений представлена на схеме.

Классификация простых фенольных соединений

text_fields

text_fields

arrow_upward

I. С 6 – ряд – фенолы

1. Одноатомные фенолы (монофенолы) . Содержатся в шишках ели, плодах и цветках смородины черной, некоторых лишайниках.

2. Двухатомные фенолы (дифенолы):

а) 1,2-дигидроксибензол

Содержится в чешуе лука, траве эфедры хвощевой, в растениях семейств вересковых, розоцветных, сложноцветных.

б) 1,4-дигидроксибензол

Гидрохинон и его производные встречаются в растениях семейств вересковых, розоцветных, камнеломковых, сложноцветных.

Гидрохинон является агликоном арбутина — гликозида, содержащегося в листьях и побегах толокнянки и брусники. В сырье толокнянки содержится также метиларбутин.

3. Трехатомные фенолы (трифенолы) — 1,3,5-тригидроксибензол — флороглюцин.

Трехатомные фенолы встречаются в растениях, как правило, в виде производных флороглюцина. Наиболее простым соединением является аспидинол, содержащий одно флороглюциновое кольцо.

Смеси различных производных флороглюцина называются флороглюцидами. Накапливаются в больших количествах в папоротниках, являются действующими веществами щитовника мужского.

II. С 6 -С 1 – ряд – фенольные кислоты, спирты, альдегиды

Широко распространены в лекарственных растениях семейств буковых, бобовых, сумаховых, розоцветных, фиалковых, вересковых. Фенолокислоты обнаружены практически у всех растений.

III. С 6 -С 2 – ряд – фенилуксусные кислоты и спирты

Пара -тиразол является агликоном гликозида салидрозида (родиолозида) — основного действующего вещества корневищ и корней родиолы розовой.

IV. С 6 -С 3 – ряд – гидроксикоричные кислоты

Встречаются практически во всех растениях, такие как кислоты пара -кумаровая (пара -гидроксикоричная), кофейная и хлорогеновая.

Гидроксикоричные кислоты обладают антимикробной и антигрибковой активностью, проявляют антибиотические свойства. Гидроксикоричные кислоты и их сложные эфиры обладают направленным действием на функцию почек, печени и желчевыводящих путей. Содержатся в траве хвоща полевого, траве зверобоя, цветках пижмы, цветках бессмертника песчаного, листьях артишока.

V.

К простым фенольным соединениям относится также госсипол, содержащийся в большом количестве в коре корней хлопчатника (Gossypium) из семейства мальвовых (Malvaceae). Это димерное соединение, содержащее в своем составе фенол:

Физические свойства простых фенольных соединений

text_fields

text_fields

arrow_upward

Простые фенольные соединения — это бесцветные, реже слегка окрашенные, кристаллические вещества с определенной температурой плавления, оптически активны. Имеют специфический запах, иногда ароматный (тимол, карвакрол). В растениях чаще встречаются в виде гликозидов, которые хорошо растворимы в воде, спирте, ацетоне; нерастворимы в эфире, хлороформе. Агликоны слабо растворимы в воде, но хорошо растворимы в эфире, бензоле, хлороформе и этилацетате. Простые фенолы имеют характерные спектры поглощения в УФ и видимой областях спектра.

Фенольные кислоты — кристаллические вещества, растворимы в спирте, этилацетате, эфире, водных растворах натрия гидрокарбоната и ацетата.

Госсипол — мелкокристаллический порошок от светло-желтого до темно-желтого цвета с зеленоватым оттенком, практически нерастворим в воде, мало растворим в спирте, хорошо растворим в липидных фазах.

Химические свойства простых фенольных соединений

text_fields

text_fields

arrow_upward

Химические свойства простых фенольных соединений обусловлены наличием:

  • ароматического кольца, фенольного гидроксила, карбоксильной группы;
  • гликозидной связи.

Для фенольных соединений характерны химические реакции:

  1. Реакция гидролиза (за счет гликозидной связи). Фенольные гликозиды легко гидролизуются под действием кислот, щелочей или ферментов до агликона и сахаров.
  2. Реакция окисления. Фенольные гликозиды легко окисляются, особенно в щелочной среде (даже кислородом воздуха), образуя хиноидные соединения.
  3. Реакция солеобразования. Фенольные соединения, обладая кислотными свойствами, образуют со щелочами растворимые в воде феноляты.
  4. Реакции комплексообразования. Фенольные соединения образуют с ионами металлов (железа, свинца, магния, алюминия, молибдена, меди, никеля) комплексы, окрашенные в различные цвета.
  5. Реакция азосочетания с солями диазония. Фенольные соединения с солями диазония образуют азокрасители от оранжевого до вишнево-красного цвета.
  6. Реакция образования сложных эфиров (депсидов). Депсиды образуют фенолокислоты (кислоты дигалловая, тригалловая).

Оценка качества сырья, содержащего простые фенольные соединения. Методы анализа

text_fields

text_fields

arrow_upward

Качественный анализ

Фенольные соединения извлекают из растительного сырья водой. Водные извлечения очищают от сопутствующих веществ, осаждая их раствором свинца ацетата. С очищенным извлечением выполняют качественные реакции.

Фенологликозиды, имеющие свободный фенольный гидроксил, дают все реакции, характерные для фенолов (с солями железа, алюминия, молибдена и др.).

Специфические реакции (ГФ ХI):

  1. на арбутин (сырье брусники и толокнянки):

а) с кристаллическим железа закисного сульфатом. Реакция основана на получении комплекса, изменяющего окраску от сиреневой до темно-фиолетовой, с дальнейшим образованием темно-фиолетового осадка.

б) с 10 % раствором натрия фосфорномолибденовокислого в кислоте хлористоводородной. Реакция основана на образовании комплексного соединения синего цвета.

  1. на салидрозид (сырье родиолы розовой):

а) реакция азосочетания с диазотированным натрия сульфацилом с образованием азокрасителя вишнево-красного цвета.

Хроматографическое исследование:

Используют различные виды хроматографии (бумажная, тонкослойная и др.). При хроматографическом анализе обычно используют системы растворителей:

  • н-бутанол-уксусная кислота-вода (БУВ 4:1:2; 4:1:5);
  • хлороформ-метанол-вода (26:14:3);
  • 15 % кислота уксусная.

Хроматографическое исследование спиртового извлечения из сырья родиолы розовой.

Используется тонкослойная хроматография. Проба основана на разделении в тонком слое силикагеля (пластинки «Силуфол») метанольного извлечения из сырья в системе растворителей хлороформ-метанол-вода (26:14:3) с последующим проявлением хроматограммы диазотированным натрия сульфацилом. Пятно салидрозида с Rf = 0,42 окрашивается в красноватый цвет.

Количественное определение

Для количественного определения фенологликозидов в лекарственном растительном сырье используют различные методы: гравиметрические, титриметрические и физико-химические.

  1. Гравиметрическим методом определяют содержание флороглюцидов в корневищах папоротника мужского. Метод основан на извлечении флороглюцидов из сырья диэтиловым эфиром в аппарате Сокслета. Извлечение очищают, отгоняют эфир, полученный сухой остаток высушивают и доводят до постоянной массы. В пересчете на абсолютно сухое сырье содержание флороглюцидов должно быть не менее 1,8 %.
  2. Титриметрический йодометрический метод используется для определения содержания арбутина в сырье брусники и толокнянки. Метод основан на окислении агликона гидрохинона до хинона 0,1 М раствором йода в кислой среде и в присутствии натрия гидрокарбоната после получения очищенного водного извлечения и проведения кислотного гидролиза арбутина. Гидролиз проводится кислотой серной концентрированной в присутствии цинковой пыли, чтобы выделившийся свободный водород предотвращал собственное окисление гидрохинона. В качестве индикатора используют раствор крахмала.

I 2 (изб.) + 2Na 2 S 2 O 3 →2NaI + Na 2 S 4 O 6

  1. Спектрофотометрический метод используется для определения содержания салидрозида в сырье родиолы розовой. Метод основан на способности окрашенных азокрасителей поглощать монохроматический свет при длине волны 486 нм. Определяют оптическую плотность окрашенного раствора, полученного по реакции салидрозида с диазотированным натрия сульфацилом, с помощью спектрофотометра. Рассчитывают содержание салидрозида с учетом удельного показателя поглощения ГСО салидрозида Е 1% 1см = 253.

Сырьевая база растений, содержащих простые фенольные соединения

text_fields

text_fields

arrow_upward

Сырьевая база достаточно хорошо обеспечена, потребность в сырье толокнянки, брусники, щитовника мужского и родиолы розовой покрывается за счет дикорастущих растений. Виды хлопчатника широко культивируются.

Брусника встречается в лесной и тундровой зонах, толокнянка обыкновенная — в лесной зоне европейской части страны, в Сибири и на Дальнем Востоке. Брусника произрастает в сосновых, еловых зеленомошных и смешанных лесах, на влажных местах, по окраинам торфяных болот. Толокнянка — в сухих сосновых беломошных и лиственничных лесах, на вырубках, открытых солнечных местах, песчаных почвах.

Щитовник (папоротник) мужской (Dryopteris filix-mas (L.) Schott, сем. аспидиевые (Aspidiaceae) произрастает в лесной зоне европейской части и в горах Южной Сибири. Предпочитает тенистые хвойные и широколиственные леса.

Ареал родиолы розовой охватывает полярно-арктическую, альпийскую и тундровую зоны европейской части, Урала, Дальнего Востока, горы юга Сибири (Алтай, Саяны). Родиола розовая образует заросли в каменистых долинах рек, в редколесьях и на влажных лугах. Основные заросли находятся на Алтае.

Сырье хлопчатника (Gossypium spp., сем. мальвовые (Malvaceae)) импортируют из стран Средней Азии.

Особенности сбора, сушки и хранения сырья, содержащего простые фенольные соединения

text_fields

text_fields

arrow_upward

Заготовку сырья брусники и толокнянки проводят в два срока — ранней весной до цветения и осенью с начала созревания плодов до появления снежного покрова. Сушка воздушно-теневая или искусственная при температуре не более 50-60 °С в тонком слое. Повторная заготовка на одних и тех же зарослях возможна через 5-6 лет.

Сырье родиолы розовой (золотой корень) заготавливают в фазы конца цветения и плодоношения. Сушат при температуре 50-60 °С. Повторная заготовка на одних и тех же зарослях возможна через 10-15 лет.

Сырье щитовника мужского (Rhizomata Filicis maris) собирают осенью, не моют, сушат в тени или в сушилках при температуре не более 40 °С. Повторная заготовка на одних и тех же зарослях возможна через 20 лет.

Сырье хлопчатника — кору корней (Cortex radicum Gossypii) — заготавливают после сбора урожая хлопка.

Хранят сырье по общему списку в сухом, хорошо проветриваемом помещении. Срок годности — 3 года. Корневища папоротника мужского хранят 1 год.

Пути использования сырья, содержащего простые фенольные соединения

text_fields

text_fields

arrow_upward

Сырье брусники, толокнянки, родиолы розовой отпускают из аптеки без рецепта врача — приказ Министерства здравоохранения и социального развития РФ № 578 от 13.09.2005 — как лекарственные средства. Корневища папоротника мужского, корневища и корни родиолы розовой, кору корней хлопчатника используют как сырье для получения готовых лекарственных средств.

Из лекарственного растительного сырья, содержащего фенологликозиды, получают:

  1. Экстемпоральные лекарственные формы:
  • отвары (сырье брусники, толокнянки, родиолы розовой);
  • сборы (сырье брусники, толокнянки, родиолы розовой).
  1. Экстракционные (галеновые) препараты:

— экстракты:

  • жидкий экстракт (корневища и корни родиолы розовой);
  • густой эфирный экстракт (корневища папоротника мужского).
  1. Новогаленовые препараты:
  • «Родаскон» из сырья родиолы розовой.
  1. Препараты индивидуальных веществ:

— 3 % линимент госсипола и глазные капли — 0,1 % раствор госсипола в 0,07 % растворе натрия тетрабората (кора корней хлопчатника).

Медицинское применение сырья и препаратов, содержащих простые фенольные соединения

text_fields

text_fields

arrow_upward

1. Антимикробное, противовоспалительное, диуретическое (мочегонное) действие характерно для сырья брусники и толокнянки. Оно обусловлено наличием в сырье арбутина, который под влиянием ферментов желудочно-кишечного тракта расщепляется на гидрохинон и глюкозу. Гидрохинон, выделяясь с мочой, оказывает антимикробное и раздражающее действие на почки, что обусловливает диуретический эффект и противовоспалительное действие. Противовоспалительное действие обусловлено также наличием дубильных веществ.

Применяют лекарственные формы из сырья брусники и толокнянки для лечения воспалительных заболеваний почек, мочевого пузыря (циститы, уретриты, пиелиты) и мочевыводящих путей. Отвары из листьев брусники используют для лечения заболеваний, связанных с нарушением минерального обмена: мочекаменной болезни, ревматизма, подагры, остеохондроза.

Побочное действие : при приеме больших доз возможно обострение воспалительных процессов, тошнота, рвота, понос. В связи с этим, прием лекарственных форм из сырья брусники и толокнянки рекомендуют проводить в комплексе с другими растениями.

2. Противовирусное действие характерно для фенольных соединений коры корней хлопчатника. «Госсипол» применяют при лечении опоясывающего лишая, простого герпеса, псориаза (линимент); при герпетическом кератите (глазные капли).

3. Адаптогенное, стимулирующее и тонизирующее действие оказывают препараты корневищ и корней родиолы розовой. Препараты повышают работоспособность при утомлении, выполнении тяжелой физической работы, оказывают активизирующее влияние на кору головного мозга. Фенольные соединения родиолы способны ингибировать перекисное окисление липидов, повышая устойчивость организма к экстремальным нагрузкам, тем самым проявляют адаптогенное действие. Применяют для лечения больных неврозами, гипотонией, вегето-сосудистой дистонией, шизофренией.

Противопоказания : гипертония, лихорадка, возбуждение. Не назначают летом в жаркое время и во второй половине дня.

Противопоказания : нарушения системы кровообращения, заболевания желудочно-кишечного тракта, печени, почек, беременность, не назначают детям в возрасте до двух лет.

text_fields

text_fields

arrow_upward

Природные фенольные соединения вещества растительного происхождения, содержащие одно или несколько ароматических колец с одной или несколькими свободными или связанными гидроксильными группами.

Фенольные соединения имеют универсальное распространение в растительном мире. Они свойственны каждому растению и даже каждой растительной клетке. В настоящее время известно свыше двух тысяч природных фенольных соединений. На долю веществ этой группы приходится до 2-3 % массы органического вещества растений, а в некоторых случаях — до 10 % и более. Фенольные соединения обнаружены также в грибах, лишайниках, водорослях. Животные потребляют фенольные соединения в готовом виде и могут их только преобразовывать.

В растениях фенольные соединения играют очень важную роль. Они являются обязательными участниками всех метаболических процессов: дыхания, фотосинтеза, гликолиза, фосфорилирования.

  1. Исследованиями русского ученого-биохимика В.И. Палладина (1912 г., Санкт-Петербург) установлено и подтверждено современными исследованиями, что фенольные соединения участвуют в процессе клеточного дыхания. Фенольные соединения выступают в качестве акцепторов (переносчиков) водорода на конечных этапах процесса дыхания, а затем вновь окисляются специфическими ферментами оксидазами.
  2. Фенольные соединения являются регуляторами роста, развития и репродукции растений. При этом оказывают как стимулирующее, так и ингибирующее (замедляющее) действие.
  3. Фенольные соединения используются растениями как энергетический материал, выполняют структурную, опорную и защитную функции (повышают устойчивость растений к грибковым заболеваниям, обладают антибиотическим и противовирусным действием).

Классификация фенольных соединений

text_fields

text_fields

arrow_upward

В основу классификации природных фенольных соединений положен биогенетический принцип. В соответствии с современными представлениями о биосинтезе и, исходя из структурных особенностей углеродного скелета, можно выделить следующие классы растительных фенолов.

Биосинтез фенольных соединений

text_fields

text_fields

arrow_upward

Биосинтез у различных групп фенольных соединений протекает по одной и той же принципиальной схеме, из общих предшественников и через сходные промежуточные продукты.

Механизм биосинтеза фенольных соединений был расшифрован в 60-х годах XX века в результате:

  • применения меченых изотопами атомов углерода С 14 и кислорода — О 18 ;
  • неклеточных систем;
  • различных генетических методов.

Биосинтез бензольного кольца в структуре фенольных соединений идет двумя путями:

  1. ацетатно-малонатный;
  2. шикиматный.

Фенольные соединения образуются тремя путями: первые два и третий путь — смешанный (отдельные части одного и того же соединения синтезируются разными путями).

  1. Ацетатно-малонатный путь.

Установлен американскими учеными Берчем и Донованом в 1955 году. Предшественником является кислота уксусная, которая образуется при гликолизе сахаров.

В результате альдольной ступенчатой конденсации остатков кислоты уксусной образуются поликетометиленовые кислоты. Присоединение происходит по типу «голова» — «хвост» при обязательном участии фермента коэнзима А с промежуточным образованием ацетил-коэнзима А, а затем малонил-коэнзима А (поэтому называют ацетатно-малонатный путь.

Циклизация поликетонов идет под действием фермента синтетазы.

Если наращивать цепочку до 16-ти углеродных атомов (8 остатков кислоты уксусной) образуется ядро антрацена:

По ацетатно-малонатному пути идет биосинтез простых фенолов и производных антрацена в грибах и лишайниках; антрахинонов группы хризацина, колец А и С антрахинонов группы ализарина у растений; кольца А в молекуле флавоноидов; госсипола, содержащегося в коре корней хлопчатника.

  1. Шикиматный путь.

Биосинтез идет через кислоту шикимовую, соединение близкое к ароматическим соединениям. В расшифровке этого пути биосинтеза большая заслуга принадлежит ученому Б. Дэвису (1951-55 гг.).

Исходными продуктами биосинтеза служат фосфоенолпируват и эритрозо4-фосфат, образующиеся в процессе гликолиза и пентозного цикла сахаров. В результате ряда ферментативных реакций и конденсации из них образуется кислота шикимовая.

Далее в процессе последовательных ферментативных реакций, протекающих при участии АТФ, присоединяется еще фосфоенолпируват, количество двойных связей увеличивается до двух — образуется кислота префеновая, а затем до трех — образуется кислота фенилпировиноградная или кислота пара -гидроксифенилпировиноградная. Далее под воздействием ферментов трансаминаз образуются ароматические аминокислоты — фенилаланин и тирозин.

При участии ферментов аммиаклиаз от аминокислот отщепляется аммиак, и возникают соответственно кислоты коричная и пара -гидроксикоричная.

Это исходные продукты синтеза пара — и орто -фенолов в растениях, кумаринов, хромонов, лигнанов, кольца В в молекуле флавоноидов, кольца В антрахинонов группы ализарина у растений, гидролизуемых дубильных веществ.

  1. Смешанный путь.

По смешанному пути синтезируются флавоноиды и антрахиноны, производные ализарина. Флавоноиды являются источником синтеза конденсированных дубильных веществ.

Физические свойства.

Простые фенольные соединения - это бесцветные, реже слегка окрашенные, кристаллические вещества с определенной температурой плавления, оптически активны. Имеют специфический запах, иногда ароматный (тимол, карвакрол). В растениях чаще встречаются в виде гликозидов, которые хорошо растворимы в воде, спирте, ацетоне; нерастворимы в эфире, хлороформе. Агликоны слабо растворимы в воде, но хорошо растворимы в эфире, бензоле, хлороформе и этилацетате. Простые фенолы имеют характерные спектры поглощения в УФ и видимой областях спектра.

Фенольные кислоты - кристаллические вещества, растворимы в спирте, этилацетате, эфире, водных растворах натрия гидрокарбоната и ацетата.

Госсипол - мелкокристаллический порошок от светло-желтого до темно-желтого цвета с зеленоватым оттенком, практически нерастворим в воде, мало растворим в спирте, хорошо растворим в липидных фазах.

Химические свойства.

Химические свойства простых фенольных соединений обусловлены наличием:

· ароматического кольца, фенольного гидроксила, карбоксильной группы;

· гликозидной связи.

Для фенольных соединений характерны химические реакции:

1. Реакция гидролиза (за счет гликозидной связи). Фенольные гликозиды легко гидролизуются под действием кислот, щелочей или ферментов до агликона и сахаров.

2. Реакция окисления. Фенольные гликозиды легко окисляются, особенно в щелочной среде (даже кислородом воздуха), образуя хиноидные соединения.

3. Реакция солеобразования. Фенольные соединения, обладая кислотными свойствами, образуют со щелочами растворимые в воде феноляты.

4. Реакции комплексообразования. Фенольные соединения образуют с ионами металлов (железа, свинца, магния, алюминия, молибдена, меди, никеля) комплексы, окрашенные в различные цвета.

5. Реакция азосочетания с солями диазония. Фенольные соединения с солями диазония образуют азокрасители от оранжевого до вишнево-красного цвета.

6. Реакция образования сложных эфиров (депсидов). Депсиды образуют фенолокислоты (кислоты дигалловая, тригалловая).

Оценка качества сырья, содержащего простые фенольные соединения. Методы анализа

Качественный и количественный анализ сырья основан на физических и химических свойствах.

Качественный анализ.

Фенольные соединения извлекают из растительного сырья водой. Водные извлечения очищают от сопутствующих веществ, осаждая их раствором свинца ацетата. С очищенным извлечением выполняют качественные реакции.

Фенологликозиды, имеющие свободный фенольный гидроксил, дают все реакции, характерные для фенолов (с солями железа, алюминия, молибдена и др.).

Специфические реакции (ГФ ХI):

1. на арбутин (сырье брусники и толокнянки):

а) с кристаллическим железа закисного сульфатом. Реакция основана на получении комплекса, изменяющего окраску от сиреневой до темно-фиолетовой, с дальнейшим образованием темно-фиолетового осадка.

б) с 10 % раствором натрия фосфорномолибденовокислого в кислоте хлористоводородной. Реакция основана на образовании комплексного соединения синего цвета.

2. на салидрозид (сырье родиолы розовой):

а) реакция азосочетания с диазотированным натрия сульфацилом с образованием азокрасителя вишнево-красного цвета.

Хроматографическое исследование:

Используют различные виды хроматографии (бумажная, тонкослойная и др.). При хроматографическом анализе обычно используют системы растворителей:

· н-бутанол-уксусная кислота-вода (БУВ 4:1:2; 4:1:5);

· хлороформ-метанол-вода (26:14:3);

· 15 % кислота уксусная.

Хроматографическое исследование спиртового извлечения из сырья родиолы розовой.

Используется тонкослойная хроматография. Проба основана на разделении в тонком слое силикагеля (пластинки «Силуфол») метанольного извлечения из сырья в системе растворителей хлороформ-метанол-вода (26:14:3) с последующим проявлением хроматограммы диазотированным натрия сульфацилом. Пятно салидрозида с Rf = 0,42 окрашивается в красноватый цвет.

Количественное определение.

Для количественного определения фенологликозидов в лекарственном растительном сырье используют различные методы: гравиметрические, титриметрические и физико-химические.

1. Гравиметрическим методом определяют содержание флороглюцидов в корневищах папоротника мужского. Метод основан на извлечении флороглюцидов из сырья диэтиловым эфиром в аппарате Сокслета. Извлечение очищают, отгоняют эфир, полученный сухой остаток высушивают и доводят до постоянной массы. В пересчете на абсолютно сухое сырье содержание флороглюцидов должно быть не менее 1,8 %.

2. Титриметрический йодометрический метод используется для определения содержания арбутина в сырье брусники и толокнянки. Метод основан на окислении агликона гидрохинона до хинона 0,1 М раствором йода в кислой среде и в присутствии натрия гидрокарбоната после получения очищенного водного извлечения и проведения кислотного гидролиза арбутина. Гидролиз проводится кислотой серной концентрированной в присутствии цинковой пыли, чтобы выделившийся свободный водород предотвращал собственное окисление гидрохинона. В качестве индикатора используют раствор крахмала.

I 2 (изб.) + 2Na 2 S 2 O 3 →2NaI + Na 2 S 4 O 6

3. Спектрофотометрический метод используется для определения содержания салидрозида в сырье родиолы розовой. Метод основан на способности окрашенных азокрасителей поглощать монохроматический свет при длине волны 486 нм. Определяют оптическую плотность окрашенного раствора, полученного по реакции салидрозида с диазотированным натрия сульфацилом, с помощью спектрофотометра. Рассчитывают содержание салидрозида с учетом удельного показателя поглощения ГСО салидрозида Е 1% 1см = 253.


Фенольные соединения представляют собой один из наиболее распространенных и многочисленных классов вторичных соединений с различной биологической активностью. К ним относятся вещества ароматической природы, которые содержат одну или несколько гидроксильных групп, связанных с атомами углерода ароматического ядра. Эти соединения весьма неоднородны по химическому строению, в растениях встречаются в виде мономеров, димеров, олигомеров и полимеров.

В основу классификации природных фенолов положен биогенетический принцип. Современные представления о биосинтезе позволяют разбить соединения фенольной природы на несколько основных групп, расположив их в порядке усложнения молекулярной структуры. Наиболее простыми являются соединения с одним бензольным кольцом - простые фенолы, бензойные кислоты, фенолоспирты, фенилуксусные кислоты и их производные. По числу ОН-групп различают одноатомные (фенол), двухатомные (пирокатехин, резорцин, гидрохинон) и трехатомные (пирогаллол, флороглюцин и др.) простые фенолы. Чаще всего они находятся в связанном виде в форме гликозидов или сложных эфиров или являются структурными элементами более сложных соединений, в том числе полимерных (дубильные вещества). Более разнообразными фенолами являются производные фенилпропанового ряда (фенилпропаноиды), содержащие в структуре один или несколько фрагментов С6-С3. К простым фенилпропаноидам можно отнести гидроксикоричные спирты и кислоты, их сложные эфиры и гликозилированные формы, а также фенилпропаны и циннамоиламиды. К соединениям, биогенетически родственным фенилпропаноидам, относятся кумарины, флавоноиды, хромоны, димерные соединения - лигнаны и полимерные соединения - лигнины. Немногочисленные группы фенилпропаноидных соединений составляют оригинальные комплексы, сочетающие в себе производные флавоноидов, кумаринов, ксантонов и алкалоидов с лигнанами (флаволигнаны, кумаринолигнаны, ксантолигнаны и алкалоидолигнаны). Уникальной группой БАВ являются флаволигнаны Silybum marianum (L.) Gaertn. (силибан, силидианин, силикристин), которые проявляют гепатозащитные свойства.

Большинство фенольных соединений ведет начало от общего предшественника - шикимовой кислоты. Шикиматный путь биосинтеза фенольных соединений начинается с продуктов обмена сахаров, образованных в результате фотосинтеза, и проходит несколько стадий до этапа специфичного предшественника шикимовой кислоты. Далее из нее образуются ароматические аминокислоты: L-фенилаланин, L-тирозин, L-триптофан. Из L-фенилаланина через промежуточную стадию оксикоричных кислот (фенилпропаноидов) образуются флавоноиды и катехины. В самой многочисленной и широко распространенной в растениях группе фенольных соединений - флавоноидах молекула содержит два ароматических кольца, причем одно из них образуется по шикиматному пути, а второе - из трех молекул активированного ацетата.

Основная биологическая активность

Пищевые растения содержат соединения фенольной группы с одним-двумя ароматическими кольцами, которые обладают выраженной биологической активностью:

Адаптогенное и стимулирующее центральную нервную систему - салидрозид (родиола розовая, или золотой корень);

Р-витаминное - рутин (софора японская, катехины (чай), витамин Р (плоды рябины обыкновенной и шиповника коричного, ягоды черной смородины и аронии черноплодной).

Гипотензивное - флавоны (шлемник байкальский), лигнаны (эвкоммия вязолистная) применяют при гипертонии и функциональных расстройствах нервной системы, при сердечно-сосудистых заболеваниях;

Спазмолитическое - фурокумарины, хромины (пастернак посевной, вздутоплодник сибирский, амми зубная) применяют при коронарной недостаточности и неврозах;

Стимулирующее - лигнаны (лимонник тайский) используют в качестве общеукрепляющего и тонизирующего средства;

Седативное - флавонолы (пустырник сердечный) применяют при сердечно-сосудистых неврозах, гипертонии, бессоннице;

Мочегонное - кемпферол, изофлавоноиды (березовые почки, корень стальника полевого) используют в качестве диуретического средства;

Желчегонное - флавонолы (пижма обыкновенная, бессмертник песчаный, мята перечная, артишок, шиповник) применяют при острых и хронических заболеваниях печени, желчного пузыря, желчных путей;

Кровоостанавливающее - флавонолы, кверцетин (горец птичий, горец почечуйный, горец перечный) применяют при маточных кровотечениях;

Антимикробное - гидрохинон, арбутин (толокнянка обыкновенная, брусника обыкновенная) применют при заболеваниях почек и мочевыводящих путей как мочегонное и дезинфицирующее средство;

Антигеморрагическое - лигнаны (джут).

Фенольные соединения с одним ароматическим кольцом

Фенолоспирты. Фенолоспирты и их гликозиды содержатся в родиоле розовой, повышают работоспособность и сопротивляемость организма к неблагоприятным воздействиям.

Оксикоричные кислоты. Оксикоричные кислоты (п-кумаровая, кофейная, феруловая и синаповая) в различных комбинациях, в свободном виде или в составе гликозидов и сложных эфиров содержатся во многих высших растениях. Наиболее распространены в природе кофейная кислота и ее производные (хлорогеновая и ее изомеры), оказывающие противовоспалительное и желчегонное действие. Хлорогеновая кислота в больших количествах присутствует в зернах кофе, листьях черники обыкновенной, арники горной, ромашки лекарственной и др. Сумма кофейной, хлорогеновой, феруловой, кумаровой и других кофеилхинных кислот оказывает гипоазотемический эффект, усиливает функцию почек, стимулирует антитоксическую функцию печени. Оксикоричные кислоты содержатся также в эхинацее, корнях лопуха, в боярышнике, ревене.

Бензойная и салициловая кислоты цветков ромашки, таволги, коры ивы, черной и красной смородины обладают антисептическим свойством. Яблочная, винная, лимонная, оксикарбоновая кислоты принимают участие в ощелачивании организма. Основной компонент гарцинии камбоджийской - гидроксилимонная кислота - подавляет аппетит, замедляет превращение избыточных углеводов в жиры, повышает энергетический потенциал организма, способствует снижению уровня холестерина в крови, уменьшает ожирение печени. Тартроновая кислота, в больших количествах содержащаяся в капусте, сдерживает превращение углеводов в жиры, предупреждая тем самым ожирение, атеросклероз.

Кумарины, оксикумарины. Кумарины обладают разносторонней биологической активностью. Для них характерна фотосенсибилизирующая (плоды псоралеи, амми большой, листья смоковницы), спазмолитическая (плоды пастернака, корни вздутоплодника сибирского и горичника горного), Р-витаминная (семена каштана) активность. В чистом виде они проявляют антикоагулирующее (дикумарол), антимикробное (умбеллиферон), эстрогенное (куместролы клевера), противоопухолевое (остол) действие.

Оксикумарины имеют определенное значение в предупреждении инфарктов и инсультов за счет способности этих веществ снижать свертываемость крови.

Хромоны. Хромоны обладают спазмолитическим, коронарорасширяющим, антибактериальным, биостимулирующим, антиаллергенным, антибактериальным действием. Эталоном спазмолитической активности хромонов принято считать келлин, который применяют при спазмах мочевых путей, бронхоспазмах и хронической стенокардии.

Ксантоны. Ксантоны обладают широким спектром биологической активности: являются стимуляторами центральной нервной системы, проявляют кардиотоническую, противоопухолевую, диуретическую активность, антибактериальное, антивирусное, противогрибковое и противотуберкулезное действие.

Мангиферин. Стимулирует ЦНС, в больших дозах оказывает кардиотоническое, диуретическое, антибактериальное и противовоспалительное действие.

Хиноны, убихиноны. Хиноны сенны, ревеня, крушины (антрахиноны) способны усиливать перистальтику толстых кишок, что обусловливает их слабительное действие. Некоторые антрахиноны хризотфаноловой кислоты и других оксиантрахинонов, а также аминоаллоксильных производных обладают противоопухолевой активностью и являются иммунодепрессантами.

Убихиноны (кофермент Q) - универсальный компонент не только растительных, но и животных тканей и тканей человека. Они входят в состав других клеточных органелл - митохондрий - и являются непременными и постоянными участниками процесса клеточного дыхания.

Лигнаны. Лигнаны оказывают стимулирующее и адаптогенное (схизандрин и производные сирингорезинола), противоопухолевое (подофиллотоксин), антигеморрагическое (сезамин), противомикробное (арктиин), гепатозащитное (силибин) действие.

Фенольные соединения с двумя ароматическими кольцами

Флавоноиды. Флавоноиды называют «натуральными биологическими модификаторами реакции» из-за способности изменять реакцию организма на аллергены, вирусы и канцерогены. Об этом говорят их противовоспалительные, антиаллергические, антивирусные и антиканцерогенные свойства. Кроме того, флавоноиды исполняют роль сильных антиоксидантов, обеспечивая защиту от окисления и повреждения свободными радикалами.

В 1936 г. венгерский биохимик Альберт Сент-Дьёрди (Albert Szent-Györgyi, 1893‑1986, лауреат Нобелевской премии 1937 г. по медицине и физиологии, с 1947 г. работал в США) из кожуры лимона выделил вещество, фармакологическое применение которого уменьшало ломкость и проницаемость кровеносных капилляров. Оно получило название витамин Р. Другие его названия: рутин, тиоктовая кислота, витамин N. Это открытие положило основу для последующего исследования большой группы значимых для организма человека веществ, называемых флавоноиды. Эти исследования были начаты в 60-х годах 20 в. Особое внимание изучению значимости флавоноидов для организма человека стали уделять в конце 20-го, начале 21 вв.

В настоящее время идентифицировано около 4000 флавоноидов. Они представляют собой полифенольные соединения, в основе структуры которых лежит дифенилпропановый углеродный скелет. Большинство из флавоноидов находятся в клетках в виде соединений с сахарами (гликозиды) и органическими кислотами. Примерами флавоноидов, значимых для человека являются рутин и квертецин. Те флавоноиды, которые связаны с одной или более молекулой сахара называют гликозидами флавоноидов. Флавоноиды, не связанные с молекулой сахара называют агликонами. За исключением флавонов, флавоноиды содержатся в большинстве пищевых продуктов растительного происхождения в виде гликозидов. Большинство гликозидов флавонидов, поступивших в пищеварительный тракт, не подвергаются перевариванию и достигают тонкой кишки в неизменном виде. Флавониды агликоны и флавоноиды глюкозиды всасываются в тонкой кишке, где они быстро метаболизируются (метилируются, глюкуронидируются или сульфатируются). Важную роль в метаболизме и всасывании флавоноидов играют бактерии толстой кишки. Невсосавшиеся в тонкой кишке флавоноиды и их метаболиты, в полости толстой кишки метаболизируются бактериальными ферментами и могут всасываться. В общем, доля флавоноидов, всосавшихся и доставленных с системным кровотоком к тканям - мишеням, относительно невелика и ограничивается как их быстрым и интенсивным метаболизмом, так и быстрым выведением из организма. Активность метаболитов флавоноидов не всегда подобна активности исходных флавоноидов. Лабораторные исследования (in vitro) показывают, что флавоноиды являются эффективными поглотителями свободных радикалов. Таким образом, в искусственных условиях флавоноиды являются активными антиоксидантами.

Хотя большинство исследований флавоноидов относится к их функции антиоксидантов, существуют убедительные доказательства того, что флавоноиды модулируют механизмы передачи вещества и информации в клетке и между клетками и, таким образом участвуют в осуществлении многих функций клеток. В частности флавоноиды осуществляют следующие действия:

1) Стимулируют активность ферментов, катализирующих реакции, которые содействуют выведению из организма потенциально токсических или канцерогенных веществ.

2) Предохраняют от нарушений регулирование нормального клеточного цикла. Каждая клетка от одного деления до другого проходит последовательность стадий развития (клеточный цикл). Если повреждается ДНК, клеточный цикл блокируется. Если степень повреждения невелика и возможно восстановление ДНК, повреждение является сигналом для ее восстановления. Некомпенсируемые последствия повреждающего воздействия являются сигналом для клеточной смерти (апоптоз). Нарушение регулирования нормального клеточного цикла может приводить к воспроизводству мутаций и к развитию злокачественных новообразований.

3) Тормозят пролиферацию и запускают апоптоз. В отличие от обычных клеток, клетки злокачественных новообразований быстро пролиферируют и теряют способность отвечать на сигналы смерти, побуждающие клетку к апоптозу.

4) Тормозят начальное внедрение опухоли и ангиогенез в новообразованиях. Клетки злокачественных новообразований вторгаются в нормальную ткань посредством ферментов, называемых матрикс-металлопротеиназами. Внедрившееся в нормальную ткань злокачественное новообразование интенсивно растет при условии получения достаточного питания из вновь развивающихся в нем кровеносных сосудов (ангиогенез).

5) Тормозят развитие воспаления. Воспаление сопровождается секрецией и выведением воспалительных ферментов. Они являются причиной местного увеличения выработки свободных радикалов. Аналогично выведение воспалительных медиаторов способствует пролиферации клеток, ангиогенезу и тормозит апоптоз.

6) Предотвращают заболевания сердечно-сосудистой системы. В настоящее время атеросклероз относят к воспалительным заболеваниям. Атеросклероз и некоторые другие виды воспаления связывают с увеличением риска инфаркта миокарда.

7) Уменьшают способность клеток кровеносных сосудов к сцеплению с лейкоцитами. На ранних этапах развития атеросклероза, как воспалительного заболевания, лейкоциты, участвующие в реализации воспаления, из потока крови мобилизуются к стенке артерии. Это явление зависит от выведения клетками эндотелия, выстилающего внутреннюю поверхность артерии, молекул вещества, способствующего сцеплению лейкоцитов с внутренней поверхностью артерии.

8) Уменьшают активность эндотелиальной синтазы окиси азота. Синтаза окиси азота - фермент, который катализирует образование эндотелиальными клетками окиси азота. Окись азота является сосудорасширяющим веществом (вазодилятатором), средством управления тонусом артерий и их просветом. Нарушение процесса образования окиси азота считают одной из причин увеличения риска заболеваний сердечно-сосудистой системы.

9) Уменьшают способность кровяных пластинок к агрегации. Агрегация кровяных пластинок - первая ступень в образовании кровяного сгустка, который может закупорить венечную артерию, питающую миокард или артерии головного мозга. Результатом этого может быть инфаркт миокарда или инсульт. Торможение агрегации кровяных пластинок рассматривается как важная мера профилактики заболеваний сердечно-сосудистой системы.

10) Полагают, что противовоспалительное действие флавонидов, их антиоксидантное действие и способность связывать металлы играют важную роль в этиологии и патогенезе ряда нейродегенеративных заболеваний, в частности болезни Паркинсона и болезни Альцгеймера. Поэтому ученые работают над созданием специальных диет для профилактики нейродегенеративных заболеваний.

Антиоксидантные свойства флавоноидов имеют более широкий спектр, чем у таких антиоксидантов, как витамины С и Е, селен, цинк. Флавоноиды также обладают желчегонным, противоязвенным, антивирусным, диуретическим, спазмолитическим, антигеморроидальным и другими действиями. Разные флавоноиды дают различные эффекты.

Изофлавоны. Изофлавоны обладают эстрагенным действием. Изофлавоны сои (дайзин, дайдзеин, глицитеин, генистрин, генистеин) действуют избирательно, проявляя как эстрогенную, так и антизстрогенную активность в зависимости от количества содержащихся в крови эстрогенов. Изофлавоны сои применяют как средство, понижающее артериальное давление, укрепляющее сердечно-сосудистую и нервную систему. Имея натуральное происхождение, без побочных эффектов, в отличие от гормональных контрацептивов, соевый изофлавон хорошо восполняет недостаток эстрогена в организме женщины. Главными изофлавонами соевых бобов является генистеин и даидзеин.

Изофлавонам приписываются следующие полезные для здоровья качества:

1) Уменьшает симптомы менопаузы. Полезные качества сои не только предотвращают раковые заболевания на длительный срок, сегодняшние разработки показали, что изофлавоны сои снижают различные признаки климактерического синдрома, таких как: отдышка, усталость, ночная потливость, перемена настроения и укрепляет костные ткани женщин. Кстати многие проблемы со здоровьем, в момент менопаузы и после нее могут стать результатом нехватки изофлавонов в типичном восточном рационе питания.

2) Предотвращает риск сердечных заболеваний. Изофлавоны сои также очевидно снижают риск заболеваний сердечно-сосудистой системы посредством различных механизмов. Они тормозят отложение в сосудах атеросклеротических бляшек, которые закупоривают артерию. В этих артериях образовываются тромбы, приводящие к сердечному приступу. Доказано, что изофлавоны являются активными компонентами сои, ответственными за контролем уровня холестерина в крови.

3) Защищает от проблем предстательной железы. Потребляя продукты насыщенные изофлавонами, можно предотвратить увеличение предстательной железы у мужчин. Исследования доказывают, что изофлавоны предотвращают рост раковых клеток предстательной железы и удаляют их из нее. Изофлавоны действуют таким же образом против клеток рака, как и многие обычные препараты, назначенные при лечении этого заболевания.

4) Изофлавоны способствуют укреплению костной ткани. Изофлавоны способствуют укреплению костной ткани, помогают предупредить остеопороз. У населения Китая и Японии крайне редко возникает остеопороз, несмотря на то, что у них низкое потребление молочных продуктов, тогда когда в Европе и Северной Америке происходит все наоборот. В отличие от эстрогена, который помогает предотвратить разрушение костной ткани, изофлавоны кроме этого помогают формированию новой костной ткани.

5) Предупреждает доброкачественные и злокачественные новообразования. Изофлавон конкурентно соединяется в тканях с рецепторами эстрогена, который производит организм или внесенный в организм, предупреждая, таким образом, реакцию рецепторов эстрогена, снижая возможности развития раковых клеток, связанных с гормонами. Изофлавоны так же помогают предупредить разрастание кровеносных сосудов внутри опухоли, таким образом, опухоль остается без источника питания.

Производные флавона. Флавоны оказывают бактерицидное, спазмолитическое, гипотензивное действие. Хорошо растворяются во многих органических растворителях, плохо - в воде. В концентрированной H 2 SO 4 растворяются с фиолетовой флуоресценцией, образуя нестабильную соль бензо-пирилия. При нагревании с алкоголятами флавон образует α-гидроксиацетофенон и бензойную кислоту (реакция используется для определения строения производных флавоноидов). В природе выделено свыше 500 производных флавонов. Сам флавон обнаружен в виде налета на листьях и цветах некоторых видов примул.

Флавонолы, в зависимости от структуры, обладают разносторонним влиянием на организм: - кемпферол, морин, мирицетин оказывают мочегонное действие; - госсипетин, морин, кверцетагетин, кверцетин и др. - антиоксидантное; - рамнетин, морин - бактерицидное; - мирицетин, кверцетагетин, изорамнетин возбуждают деятельность сердца; - робинин, леспедин, биоробин, диоробин, гиперозид имеют гипоазотемическое свойство; - госсипол - антиканцерогенное. Среди флавононов наиболее распространенными являются флавоновый гликозид гесперидин - основной флавоноид апельсинового сока и флавононовый гликозид нарингин - основной флавоноид грейпфрутового сока, который положительно влияет на состав крови. Гесперидин относится к комплексу биофлавоноидных соединений, способных уменьшать проницаемость и ломкость капиллярных кровеносных сосудов. Он широко используется при гипо- и авитаминозе Р и лечении многих заболеваний кровеносных сосудов (например, «пурпуровой болезни» - тромбопенической пурпуры, геморрагических диатезов, кровоизлияний в сетчатку глаза, лучевой болезни), а также при гипертонии, кори, скарлатине, сыпном тифе и т.д. Кроме этого, установлено, что кверцетин и гисперидин обладают выраженным антиаллергическим действием и благотворно влияют на стенки сосудов.

Эвгенол, входящий в состав эфирного масла лаврового и гвоздичного дерева, является сильным антисептиком, таким же действием обладает тимол, содержащийся в чабреце. Производные флороглюцина, находящиеся в папоротниках, оказывают противоглистное действие, а апиол из плодов петрушки проявляет спазмолитическое свойство. Арбутин содержится в бруснике и толокнянке груше; обладает диуретическими свойствами и предупреждает ряд заболеваний почек. Гидрохинон, образующийся в результате гидролиза арбутина, проявляет бактерицидные свойства, тормозит окисление жиров. Вакциниин - гликозид, специфичный для брусники и клюквы, является соединением глюкозы с бензойной кислотой, обладает бактерицидным действием. Вакцимиртиллин - горький гликозид черники и голубики, содержащийся в них в количестве 1,2 - 1,8мг на 100г, предупреждает диабет. Флавоноиды родиолы розовой («золотого корня») обладают адаптогенными и иммуностимулирующими свойствами.

Проантоцианиды. Это одна из самых целебных групп флавоноидов. Они поддерживают структуру коллагена и препятствуют ее разрушению за счет того, что они способствуют связыванию волокон коллагена, укрепляя тем самым матрицу соединительной ткани. Комплексы биологически активных веществ экстракта виноградной выжимки эффективно нейтрализуют свободные радикалы, подавляют синтез липидных перекисей, ингибируют ферменты, участвующие в образовании активных форм кислорода (например, ксантиноксидазу), препятствуют расщеплению коллагена ферментами, выделяемыми лейкоцитами при воспалении и микроорганизмами при инфицировании тканей, синтезу гистамина, серинпротеазы, лейкотриенов. С этим механизмом связано противовоспалительное действие проантоцианидов. Их антиоксидантное действие выше такового у витамина Е в 50 раз, у витамина С - в 20 раз.

Экстракты из виноградных косточек более предпочтительны, так как за счет содержания сложных галловых эфиров проантоцианидов они имеют повышенную активность. Эти вещества являются самыми активными из всех в настоящее время известных антиоксидантов. С указанными свойствами связана важная область их использования для предотвращения сердечно-сосудистых заболеваний, в том числе инфаркта миокарда, повреждения эндотелия сосудов, снижения уровня холестерина в крови. Экстракт виноградной выжимки способствует улучшению микроциркуляции, эффективен при лечении ангиопатий, ретинопатии, а также воспалительных процессов за счет ингибирования биосинтеза противовоспалительных лейкотриенов.

Полимерные фенольные соединения (полифенолы)

Дубильные вещества. Применяются как вяжущие, противовоспалительные и бактерицидные средства (лапчатка прямостоячая, горец змеиный, кровохлебка лекарственная, корневища бадана толстолистного, «шишки» ольхи серой и др.) при острых и хронических поносах, энтероколитах (плоды черники, черемухи), а также при стоматитах, гингивитах и других воспалительных процессах в полости рта, гортани, глотки и т.д.

Таниды. Таниды используют при отравлении алкалоидами и тяжелыми металлами. Их вяжущее, противовоспалительное и кровоостанавливающее действие связано с тем, что они свертывают белки и образуют защитную пленку.

Катехины. Катехины - органические вещества из группы флавоноидов. Они представляют собой полифенольные соединения и являются сильными антиоксидантами. Характерные представители семейства - стереоизомеры катехин и эпикатехин.

Больше всего катехинов содержится в белом чае, немного меньше в зелёном чае. В больших количествах они обнаружены во многих плодах и ягодах (яблоки, айва, абрикосы, персики, сливы, вишни, земляника, смородина, малина и др.). Катехины также содержатся в чёрном шоколаде и яблоках. Танин - общее название изомеров одного из катехинов, который присутствует в белом, жёлтом и зеленом чае в большей концентрации, чем в чёрном. Из-за процессов окисления при ферментации чая в чёрном чае уменьшено содержание катехинов. Катехины - это полифенолы, хорошие антиоксиданты.

Антиоксидантные свойства многих растительных продуктов в значительной мере обусловлены именно содержанием катехинов. Полезные защитные свойства катехинов могут быть проиллюстрированы на примере чая. Чай содержит четыре основных компонента катехина: EC, ECg, EGC и EGCg. Каждое из этих соединений можно назвать катехином. Эпигаллокатехин (EGC) - самый сильный антиоксидант из четырёх основных чайных катехинов, в 25-100 раз сильнее, чем витамины C и E. Одна чашка зеленого чая в день дает 10-40 милиграммов полифенолов. Антиоксидантный эффект присущ и катехинам из брокколи, шпината, моркови, клубники. Являясь сильным антиоксидантом, зелёный чай уменьшает количество свободных радикалов в организме человека, в определённой мере предотвращая возникновение рака.

В чистом виде катехины применяются редко. Однако редокс-превращения катехинов играют важную роль в технологии многих пищевых производств, таких как ферментация чая, виноделие, изготовление какао.

Кроме того, катехины чая обладают антимикробными свойствами и применяются при лечении дизентерии. Считается также, что катехины полезны для укрепления иммунной системы и для лечения опухолей. Катехины относят к веществам, обладающим Р-витаминной активностью. Лекарственные препараты и БАД, содержащие катехины и другие биофлавоноиды, широко используют при лечении заболеваний, связанных с нарушениями функций капилляров, отёках сосудистого происхождения и т.п.

Эпикатехингаллат считается наиболее активным среди полифенолов. Эти соединения обладают выраженными антиоксидантными свойствами, способностью повышать функциональную активность систем детоксикации чужеродных соединений и за счет этих свойств существенно снижать риск развития опухолей молочных желез, простаты, легких, кишечника и др.

Распространенность в природе

Флавоноиды широко распространены в растительном мире. Особенно богаты флавоноидами высшие растения, относящиеся к семействам розоцветных (различные виды боярышников, черноплодная рябина), бобовых (софора японская, стальник полевой, солодка), гречишных (различные виды горцев - перечный, почечуйный, птичий: гречиха), астровых (бессмертник песчаный, сушеница топяная, пижма), яснотковых (пустырник сердечный) и др.

Более часто флавоноиды встречаются в тропических и альпийских растениях. Обнаружены и у низших растений: зеленые водоросли (ряски), споровые (мхи, папоротники), хвощи (хвощ полевой), а также у некоторых насекомых (мраморно-белая бабочка).

Находятся флавоноиды в различных органах, но чаще в надземных: цветках, листьях, плодах; значительно меньше их в стеблях и подземных органах (солодка, шлемник байкальский, стальник полевой). Наиболее богаты ими молодые цветки, незрелые плоды. Локализуются в клеточном соке в растворенном виде.

Флавоноиды накапливаются во многих лекарственных растениях: в корнях солодки (Glycyrrhiza glabra L.), траве пустырника (Leonurus cordiaca L.), цветках бессмертника (Helichryzum arenarium L.) - и отличаются широким спектром фармакологического действия. Они обладают желчегонным, бактерицидным, спазмолитическим, кардиотоническим действием. В медицине широко используют свойство многих флавоноидов, например рутина, накапливающегося во многих растениях (Р-витаминный эффект), уменьшать проницаемость и ломкость капилляров. У флавоноидов выявлено также противораковое и противолучевое действие, они связывают и выводят из организма радионуклиды. Отсутствие токсических свойств и избирательность действия на организм человека увеличивает ценность флавоноидных соединений и открывает большое будущее для создания на их основе новых лекарственных препаратов.



К фенольным соединениям ФС относится обширный класс циклических веществ, являющихся производными ароматического спир- та - фенола (С 6 Н 5 ОН). В молекуле фенольных соединений имеется ароматическое кольцо, содержащее одну или несколько гидроксильных групп. Фенольные соединения находятся в растениях, плодах и овощах преимущественно в виде гликозидов и реже в свободном виде .

Биосинтез фенольных соединений в растительной клетке происходит в протоплазме, в частности, в хлоропластах. Однако основная масса водорастворимых фенолов сосредоточена в вакуолях, ограниченных от цитоплазмы белково-липидной мембраной - тонопластом, который регулирует участие веществ, содержащихся в вакуолях, в метаболизме клетки. В животном организме фенольные соединения не синтезируются, а поступают с растительной пищей и участвуют в обменных процессах.

К гликозидам относятся разнообразные вещества, у которых какой-либо сахар (чаще - глюкоза, реже - другие моносахариды) соединен за счет гликозидного гидроксила с другими веществами, не являющимися сахарами (спиртами, альдегидами, фенолами, алкалоидами, стероидами и др.). Вторая часть молекулы гликозидов называется агликоном (не сахар).

Все фенольные соединения являются активными метаболитами клеточного обмена и играют важную роль в различных физиологических функциях растений, плодов, картофеля и овощей - дыхании, росте, устойчивости к инфекционным заболеваниям.

О важной биологической роли фенольных соединений свидетельствует их распределение в растительной ткани. Разные органы и ткани растений, плодов и овощей различаются не только количественным содержанием фенолов, но и качественным их составом.

В настоящее время известно более 2000 фенольных соединений, существенно различающихся по своим свойствам. В связи с этим важное значение имеет классификация фенольных соединений, представленная на рис. 3 .

Фенольные соединения условно разделяются на три основные группы :

1. Мономерные.

2. Димерные.

3. Полимерные.

Мономерные фенольные соединения содержат одно ароматиче-ское кольцо и делятся на три подгруппы:

Соединения С 6 -ряда, состоящие из ароматического кольца без углеродных боковых цепей; к ним относятся гидрохинон, пирокатехин и его производные, гваякол, флороглюцин, пирогаллол. Все они содержатся в растениях главным образом в связанном виде;

Соединения с основной структурой С 6 -С 1 -ряда включают в себя группу фенолкарбоновых кислот и их производных - протокатеховую, ванилиновую, галловую, салициловую, оксибензойную и другие


кислоты; эти соединения встречаются в плодах и овощах в свободном виде;

Соединения с основной структурой С 6 -С 3 -ряда, состоящие из ароматического кольца и трехуглеродной боковой цепи, делятся на коричные кислоты, кумарины и производные последних: изокумарины, фурокумарины.

Кумарины рассматриваются как лактоны оксикоричных кислот. Наиболее распространенными коричными кислотами являются п-ку-маровая, кофейная, феруловая и синаповая.

Включайся в дискуссию
Читайте также
Как наладить пищеварение и работу кишечника
Шишига в славянской и христианской мифологии — нечистая сила или дух-помощник Шишига мифология
Что значит