Подпишись и читай
самые интересные
статьи первым!

Поверхностные акустические волны в пьезоэлектриках. Понятие об акустических колебаниях и волнах В каких веществах не возникают акустические волны

Пове́рхностные акусти́ческие во́лны (ПАВ) - упругие волны , распространяющиеся вдоль поверхности твёрдого тела или вдоль границы с другими средами. ПАВ подразделяются на два типа: с вертикальной поляризацией и с горизонтальной поляризацией (волны Лява ).

К наиболее часто встречающимся частным случаям поверхностных волн можно отнести следующие:

  • Волны Рэлея (или рэлеевские), в классическом понимании распространяющиеся вдоль границы упругого полупространства с вакуумом или достаточно разреженной газовой средой.
  • на границе твердого тела с жидкостью.
  • , бегущая по границе жидкости и твердого тела
  • Волна Стоунли , распространяющаяся вдоль плоской границы двух твердых сред, модули упругости и плотности которых не сильно различаются.
  • Волны Лява - поверхностные волны с горизонтальной поляризацией (SH типа), которые могут распространяться в структуре упругий слой на упругом полупространстве.

Энциклопедичный YouTube

    1 / 3

    ✪ Сейсмические волны

    ✪ Продольные и поперечные волны. Звуковые волны. Урок 120

    ✪ Лекция седьмая: Волны

    Субтитры

    В этом видео я хочу немного обсудить сейсмические волны. Запишем тему. Во-первых, они очень интересны сами по себе и, во-вторых, очень важны для понимания строения Земли. Вы уже видели мое видео о слоях Земли, и именно благодаря сейсмическим волнам мы сделали вывод, из каких слоев состоит наша планета. И, хотя обычно сейсмические волны ассоциируются с землетрясениями, на самом деле это любые волны, путешествующие по земле. Они могут возникнуть от землетрясения, сильного взрыва, чего угодно, что способно послать много энергии прямо в землю и камень. Итак, существуют два основных типа сейсмических волн. И мы больше сосредоточимся на одном из них. Первый - поверхностные волны. Запишем. Второй - объемные волны. Поверхностные волны - это просто волны, распространяющиеся по поверхности чего-либо. В нашем случае по поверхности земли. Здесь, на иллюстрации, видно, как выглядят поверхностные волны. Они похожи на рябь, которую можно увидеть на поверхности воды. Поверхностные волны бывают двух типов: волны Рэлея и волны Лява. Я не буду распространяться, но здесь видно, что волны Рэлея движутся вверх и вниз. Вот здесь земля двигается вверх-вниз. Тут движется вниз. Тут - вверх. И тут - снова вниз. Похоже на бегущую по земле волну. Волны Лява, в свою очередь, двигаются в стороны. То есть, вот здесь волна не движется вверх-вниз, а, если посмотреть по направлению волны, она движется влево. Здесь движется вправо. Здесь - влево. Здесь - снова вправо. В обоих случаях, движение волны перпендикулярно направлению ее перемещения. Иногда такие волны называют поперечными. И они, как я уже говорил, похожи на волны в воде. Намного более интересны объемные волны, потому что, во-первых, это самые быстрые волны. И, к тому же, именно эти волны используются для изучения структуры земли. Объемные волны бывают двух типов. Есть P-волны, или первичные волны. И S-волны, или вторичные. Их можно увидеть вот здесь. Такие волны - это энергия, перемещающаяся внутри тела. А не просто по его поверхности. Итак, на данном рисунке, который я скачал из Википедии, видно, как по большому камню бьют молотком. И когда молоток попадает по камню… Давайте я перерисую покрупнее. Здесь у меня будет камень, и я бью его молотком. Он сожмет камень там, куда он попал. Тогда энергия от удара толкнет молекулы, которые врежутся в молекулы по соседству. И эти молекулы врежутся в молекулы за ними, а те, в свою очередь, в молекулы рядом. Получится, что эта сжатая часть камня движется волной. Вот это - сжатые молекулы, они врежутся в молекулы рядом и тогда здесь камень станет плотнее. Первые молекулы, те, которые начали все движение, вернутся на место. Поэтому сжатие сдвинулось, и дальше сдвинется еще. Получается волна сжатия. Вы бьете молотком сюда и получаете меняющуюся плотность, которая движется в направлении волны. В нашем случае молекулы двигаются вперед и назад вдоль одной оси. Параллельно направлению волны. Это - Р-волны. Р-волны могут распространяться в воздухе. По существу, звуковые волны - это волны сжатия. Они могут перемещаться как в жидкостях, так и в твердых веществах. И, в зависимости от среды, они двигаются с разными скоростями. В воздухе они двигаются со скоростью 330 м/с, что не так уж и медленно для повседневной жизни. В жидкости они двигаются на скорости 1 500 м/с. А в граните, из которого состоит большая часть поверхности Земли, они двигаются на скорости 5 000 м/с. Давайте я это запишу. 5 000 метров, или 5 км/с в граните. А S-волны, сейчас я нарисую, потому что эта слишком маленькая. Если ударить молотком сюда, сила удара временно сдвинет камень в сторону. Он немного деформируется и потянет за собой соседний участок камня. Затем этот камень сверху будет утянут вниз, а камень, по которому изначально ударили, вернется вверх. И приблизительно через миллисекунду слой камня сверху немного деформируется вправо. И дальше, с течением времени, деформация будет двигаться вверх. Заметьте, что в этом случае волна тоже движется вверх. Но движение материала теперь не параллельно оси, как в Р-волнах, а перпендикулярно. Эти перпендикулярные волны также называют поперечными колебаниями. Движение частиц перпендикулярно оси движения волны. Это и есть S-волны. Они двигаются чуть медленнее Р-волн. Поэтому, если вдруг случится землетрясение, сначала вы почувствуете Р-волны. А затем, на приблизительно 60% скорости Р-волн придут S-волны. Итак, для понимая структуры Земли важно помнить, что S-волны могут двигаться только в твердых веществах. Запишем это. Вы могли бы сказать, что видели поперечные волны на воде. Но там были поверхностные волны. А мы обсуждаем объемные волны. Волны, которые проходят внутри объема воды. Чтобы было проще это представить, я нарисую немного воды, скажем, вот здесь будет бассейн. В разрезе. Вот как-то так. Да, мог бы и получше нарисовать. Итак, здесь будет бассейн в разрезе, и я надеюсь, что вы поймете, что в нем происходит. И если я сожму часть воды, например, ударив по ней чем-нибудь очень большим, чтобы вода быстро сжалась. Р-волна сможет двигаться, потому что молекулы воды врежутся в молекулы по соседству, которые врежутся в молекулы за ними. И это сжатие, эта Р-волна, будет двигаться в направлении от моего удара. Отсюда видно, что Р-волна может двигаться как в жидкостях, так и, например, в воздухе. Хорошо. И помните, что мы говорим о подводных волнах. Не о поверхностях. Наши волны движутся в объеме воды. Предположим, что мы взяли молоток и ударили по данному объему воды со стороны. И от этого возникнет только волна сжатия в эту сторону. И больше ничего. Поперечной волны не возникнет, потому что у волны нет той эластичности которая позволяет ее частям колебаться из стороны в сторону. Для S-волны нужна такая эластичность, которая бывает только в твердых телах. В дальнейшем мы будем использовать свойства Р-волн, которые могут двигаться в воздухе, жидкости и твердых телах, и свойства S-волн, чтобы узнать, из чего состоит земля. Subtitles by the Amara.org community

Волны Рэлея

Затухающие волны рэлеевского типа

Затухающие волны рэлеевского типа на границе твердого тела с жидкостью.

Незатухающая волна с вертикальной поляризацией

Незатухающая волна с вертикальной поляризацией , бегущая по границе жидкости и твердого тела со скоростью звука в данной среде.

Билет №1

Физические основы ультразвуковой дефектоскопии

ПОНЯТИЕ ОБ АКУСТИЧЕСКИХ КОЛЕБАНИЯХ И ВОЛНАХ

· Акустическими волнами называют распространяющиеся в упругой среде механические колебания частичек среды.

При движении волны частицы не перемещаются, а совершают колебания около своих положений равновесия.

· Расстояние между ближайшими частицами, колеблющимися в одинаковой фазе, называетсядлиной волны .

Длина волны связана со скоростью распространения С и частотой f (или периодом Т ) соотношением

где: - длина волны [м]; С –скорость распространения [м/с];

Т – период [с]; f – частота [Гц].

Например для воздуха : С = 330 м/с

f = 20 Гц ® = 16,5 м;

f = 20000 Гц ® = 1,65 см;

f = 20000000 Гц ® = 0,165 мм;

В зависимости от направления колебаний частиц по отношению к направлению распространения волны различают: продольные, поперечные, поверхностные и нормальные волны (волны в пластинах).

В продольной волне частицы колеблются вдоль направления распространения волны. Колебания могут распространяться в твердой, жидкой и газообразных средах.

Если направление колебаний частиц среды перпендикулярно направлению распространения, то такие колебания называются поперечными (или сдвиговыми) . Они могут распространяться только в среде, которая обладает упругостью формы.

Продольные и поперечные волны могут распространяться в чистом виде только в неограниченной среде (¥ или ¥/2) или в теле, размеры которого в направлениях, не совпадающих с направлением распространения волны, значительно превышают длину последней. Схематично продольные и поперечные волны представлены на рис. 1.

Рис. 1 Распространение продольных и поперечных волн

На свободной поверхности могут распространяться поверхностные волны (волны Рэлея). В поверхностной волне частицы одновременно совершают колебания в направлении распространения и перпендикулярно ему, описывая эллиптические или более сложные траектории. Амплитуда колебание по мере удаления от поверхности вглубь убывает по экспоненте, поэтому волна локализована в тонком поверхностном слое толщиной в одну – полторы длины волны и следует изгибам поверхности рис. 2.

Рис. 2 Распространение поверхностных волн

При распространении волны в плоских телах с постоянной толщиной (листах, тонких пластинках, проволоке) могут возникать нормальные волны или Волны Лэмба. При этом частицы совершают колебания по таким же траекториям, как в поверхностной волне, но на всю толщину листа, пластины оболочки. Обычно возникают и распространяются независимо две нормальные волны симметричная (волна сжатия или растяжения) и антисимметричная (волна изгиба) рис. 3.


Рис. 3 Волны в пластинах

а - симметричная, б - ассиметричная

Скорости распространения продольной, поперечной и поверхностной волн определяется упругими свойствами материала (модулями упругости и сдвига, коэффициентами Пуассона) и его плотностью. Скорость распространения нормальных волн в отличие от скорости распространения других типов волн зависит не только от свойств материала, но и от частоты звуковых колебаний и толщины изделия.

С l >С t >С S ; С t ~ 0,55 C l С S ~ 0,93 С t .

Акустические волны различают также по форме фронта волны или волновой поверхности.

· Фронт волны это геометрическое место точек среды, в которых в рассматриваемый момент времени фаза волны имеет одно и то же значение.

Если в среде распространяется кратковременное возмущение (импульс), то фронтом волны называется граница между возмущенной и невозмущенной областями среды.

Фронт или волновая поверхность непрерывно перемещается в среде и при этом деформируется. В неограниченной изотропной среде распространение упругих волн имеет пространственный характер, и, в зависимости от формы фронта, волны могут быть плоскими, сферическими ицилиндрическими рис 4.

Рис. 4 Плоские, сферические, цилиндрические волны

· Плоские волны возбуждаются пластинкой, если ее поперечные размеры намного превосходят длину волны. Волновые поверхности плоской волны имеют вид параллельных плоскостей.

· Сферические волны возбуждаются точечным источником или колеблющимся шаровым телом, размеры которого малы. Волновые поверхности сферической волны имеют вид концентрических сфер.

· Цилиндрические волны возбуждаются цилиндрическим телом (стержень, цилиндр и т.д.) длина которого значительно его поперечных размеров. Волновые поверхности имеют вид концентрических цилиндров.

На очень больших расстояниях сферические и цилиндрические волны переходят в плоские.

В зависимости от частот различают следующие волны:

· Инфразвуковые f= до 16-20 Гц;

· Звуковые f= 16 – 20000 Гц;

· Ультразвуковые f=20 кГц – 1000 Мгц;

· Гиперзвуковые f> 1000 Мгц.

Для целей дефектоскопии используются волны различных диапазонов:

Звуковой f=1-8 кГц;

Ультразвуковой f= 20 кГц – 50 Мгц;

В настоящее время ведутся работы и удается получать частоты до 1000 МГц.

Длина волны гиперзвуковых колебаний сравнима с длиной волны видимых световых волн. Это делает их похожими по своим свойствам со свойствами световых лучей, поэтому многие задачи рассматриваются с точки зрения геометрической акустики.

· Геометрическая акустика – упрощенная теория распространения звука, пренебрегающая дифракционными явлениями.

Геометрическая акустика основана на представлении о звуковых лучах, вдоль каждого из которых звуковая энергия распространяется не зависимо от соседних лучей. В однородной среде звуковые лучи – прямые линии.

С математической точки зрения геометрическая акустика есть предельный случай волновой теории распространения звука при стремлении длины волны к 0 и в этом отношении аналогична геометрической оптике в теории распространения света.

Коротковолновые УЗ - колебания распространяются в виде направленных лучей. Как и световые лучи они могут отражаться, преломляться, фокусироваться, интерферировать, при чем не только сами с собой, но и со светом, испытывать дифракцию и затухать по мере распространения.

Длина волны гиперзвуковых волн может стать сравнимой с размерами атомов. В этом случае начинается проявляться квантовый характер такой волны и, по аналогии со световым потоком, такой поток звуковой энергии оказывается возможно рассматривать в виде потока частиц (фононов), которые взаимодействуют уже не с конечными объемами вещества или кристаллами, а уже с электронами атома. При этом возникают различные эффекты такого взаимодействия, которые позволяют изучать более широкий круг физических характеристик материалов.

С другой стороны инфразвуковые волны обладают большими длинами, проходят на большие расстояния, что позволяет контролировать физические свойства больших массивов вещества (напр. в геологоразведке).

Акустические волны ультразвукового диапазона обладают свойствами очень сильно отражаться от границы твердое тело – воздух. Расчеты показывают, что слои воздуха толщиной 10 -5 мм и более при f= 5 Мгц происходит 100% отражение посланной энергии, при толщине слоя <10 -5 мм отражение составляет ~ 90%, а слой толщиной 10-6 мм отражает ~ 80% посланной энергии. Благодаря этому свойству УЗ - колебания эффективно отражаются от трещин, воздушных полостей и т.д., что позволяет их легко обнаружить.

Все выше сказанное привело к широкому распространению акустических методов контроля качества материалов и изделий.

Колебание - это движение вокруг некоторого среднего положения, обладающее повторяемостью (например колебание маятника). Любое колеблющееся тело стремится к положению равновесия.

Волны - колебательные движения, распространяющиеся в пространстве: колебания одной точки передаются соседней и т.д.

Звук – это механические колебания, которые распространяются в упругой среде (воздухе, воде, твердых телах).

Инфразвук < 16 Гц

Звук 16 – 20000 Гц

Ультразвук 20000 – 109 Гц

Гиперзвук >109 Гц

Тепловые колебания >1012 Гц

1кГц = 103 Гц, 1мГц = 106 Гц

В ультразвуковой дефектоскопии используются частоты от 0,6 до 10 МГц.

Процесс распространения ультразвука в пространстве является волновым.

Волново́й фронт - это совокупность частиц, до которых дошли колебания к данному моменту времени. По геометрии фронта различают сферические (например, звуковая волна на небольшом расстоянии от точечного источника звука), цилиндрические (например, звуковая волна на небольшом расстоянии от источника звука, представляющий собой длинный цилиндр малого диаметра), плоские волны (плоскую волну может излучать бесконечная колеблющаяся пластина).

Звук представляет собой звуковые волны, которые вызывают колебания мельчайших частиц воздуха, других газов, а также жидких и твердых сред. Звук может возникать только там, где есть вещество, не важно, в каком агреатном состоянии оно находится. В условиях вакуума, где отсутствует какая-либо среда, звук не распространяется, потому что там отсутствуют частицы, которые и выступают распространителями звуковых волн. Например, в космосе. Звук может модифицироваться, видоизменяться, превращаясь в иные формы энергии. Так, звук, преобразованный в радиоволны или в электрическую энергию, можно передавать на расстояния и записывать на информационные носители.

Звуковая волна

Движения предметов и тел практически всегда становятся причиной колебаний окружающей среды. Не важно, вода это или воздух. В процессе этого частицы среды, которой передаются колебания тела, также начинают колебаться. Возникают звуковые волны. Причем движения осуществляются в направлениях вперед и назад, поступательно сменяя друг друга. Поэтому звуковая волна является продольной. Никогда в ней не возникает поперечного движения вверх и вниз.

Характеристики звуковых волн

Как и любое физическое явление, они имеют свои величины, при помощи которых можно описать свойства. Основные характеристики звуковой волны - это ее частота и амплитуда. Первая величина показывает, какое количество волн образуется за секунду. Вторая определяет силу волны. Низкочастотные звуки имеют низкие показатели частоты, и наоборот. Частота звука измеряется в Герцах, и если она превышает 20 000 Гц, то возникает ультразвук. Примеров низкочастотных и высокочастотных звуков в природе и окружающем человека мире достаточно. Щебетание соловья, раскаты грома, грохот горной реки и другие - это все разные звуковые частоты. Значение амплитуды волны напрямую зависит от того, насколько звук громок. Громкость же, в свою очередь, уменьшается по мере удаления от источника звука. Соответственно, и амплитуда тем меньше, чем дальше от эпицентра находится волна. Другими словами, амплитуда звуковой волны уменьшается при удалении от источника звука.

Скорость звука

Этот показатель звуковой волны находится в прямой зависимости от характера среды, в которой она распространяется. Значимую роль здесь играют и влажность, и температура воздуха. В средних погодных условиях скорость звука составляет приблизительно 340 метров в секунду. В физике существует такое понятие, как сверхзвуковая скорость, которая всегда по значению больше, чем скорость звука. С такой скоростью распространяются звуковые волны при движении самолета. Самолет движется со сверхзвуковой скоростью и даже обгоняет звуковые волны, создаваемые им. Вследствие давления, постепенно увеличивающегося позади самолета, образуется ударная звуковая волна. Интересна и мало кому известна единица измерения такой скорости. Называется она Мах. 1 Мах равен скорости звука. Если волна движется со скоростью 2 Маха, значит, она распространяется в два раза быстрее, чем скорость звука.

Шумы

В повседневной жизни человека присутствуют постоянные шумы. Измеряется уровень шума в децибелах. Движение автомобилей, ветер, шелест листвы, переплетение голосов людей и другие звуковые шумы являются нашими спутниками ежедневно. Но к таким шумам слуховой анализатор человека имеет возможность привыкать. Однако существуют и такие явления, с которыми даже приспособительные способности человеческого уха не могут справиться. Например, шум, превышающий 120 дБ, способен вызвать ощущение боли. Самое громкое животное - синий кит. Когда он издает звуки, его можно услышать на расстоянии более 800 километров.

Эхо

Как возникает эхо? Здесь все очень просто. Звуковая волна имеет способность отражаться от разных поверхностей: от воды, от скалы, от стен в пустом помещении. Эта волна возвращается к нам, поэтому мы слышим вторичный звук. Он не такой четкий, как первоначальный, поскольку некоторая энергия звуковой волны рассеивается при движении до преграды.

Эхолокация

Отражение звука используется в различных практических целях. Например, эхолокация. Она основана на том, что с помощью ультразвуковых волн можно определить расстояние до объекта, от которого эти волны отражаются. Расчеты осуществляются при измерении времени, за которое ульразвук доберется до места и вернется обратно. Способностью к эхолокации обладают многие животные. Например, летучие мыши, дельфины используют ее для поиска пищи. Другое применение эхолокация нашла в медицине. При исследованиях с помощью ультразвука образуется картинка внутренних органов человека. В основе такого метода находится то, что ультразвук, попадая в отличную от воздуха среду, возвращается обратно, формируя таким образом изображение.

Звуковые волны в музыке

Почему музыкальные инструменты издают те или иные звуки? Гитарные переборы, наигрыши пианино, низкие тона барабанов и труб, очаровывающий тонкий голосок флейты. Все эти и многие другие звуки возникают по причине колебаний воздуха или, другими словами, из-за появления звуковых волн. Но почему звучание музыкальных инструментов настолько разнообразное? Оказывается, это зависит от некоторых факторов. Первое - это форма инструмента, второе - материал, из которого он изготовлен.

Рассмотрим это на примере струнных инструментов. Они становятся источником звука, когда на струны воздействуют касанием. Вследствие этого они начинают производить колебания и посылать в окружающую среду разные звуки. Низкий звук какого-либо струнного инструмента обусловлен большей толщиной и длиной струны, а также слабостью ее натяжения. И наоборот, чем сильнее натянута струна, чем она тоньше и короче, тем более высокий звук получается в результате игры.

Действие микрофона

Оно основано на преобразовании энергии звуковой волны в электрическую. В прямой зависимости при этом находятся сила тока и характер звука. Внутри любого микрофона расположена тонкая пластина, выполненная из металла. При воздействии звуком она начинает совершать колебательные движения. Спираль, с которой соединена пластинка, также вибрирует, в результате чего возникает электрический ток. Почему он появляется? Это связано с тем, что в микрофоне также встроены магниты. При колебаниях спирали между его полюсами и образуется электрический ток, который идет по спирали и далее - на звуковую колонку (громкоговоритель) или к технике для записи на информационный носитель (на кассету, диск, компьютер). Кстати, аналогичное строение имеет микрофон в телефоне. Но как действуют микрофоны на стационарном и мобильном телефоне? Начальная фаза одинакова для них - звук человеческого голоса передает свои колебания на пластинку микрофона, далее все по описанному выше сценарию: спираль, которая при движении замыкает два полюса, создается ток. А что дальше? Со стационарным телефоном все более-менее понятно - как и в микрофоне, звук, преобразованный в электрический ток, бежит по проводам. А как же обстоит дело с сотовым телефоном или, например, с рацией? В этих случаях звук превращается в энергию радиоволн и попадает на спутник. Вот и все.

Явление резонанса

Иногда создаются такие условия, когда амплитуда колебаний физического тела резко возрастает. Это происходит вследствие сближения значений частоты вынужденных колебаний и собственной частоты колебаний предмета (тела). Резонанс может приносить как пользу, так и вред. Например, чтобы вызволить машину из ямки, ее заводят и толкают взад-вперед для того, чтобы вызвать резонанс и придать автомобилю инерцию. Но бывали и случаи негативного последствия резонанса. К примеру, в Петербурге приблизительно сто лет назад рухнул мост под синхронно шагающими солдатами.

До сих пор шла речь об объемных акустических волнах и, распространяющихся в объеме изотропного твердого тела. В 1885 г. английский физик Рэлей теоретически предсказал возможность распространения в тонком поверхностном слое твердого тела, граничащего с воздухом, поверхностных акустических волн, которые принято называть рэлеевскими волнами - волнами. В задаче Рэлея ограничимся постановкой задачи и ее конечными результатами. Имеется плоская граница вакуум - изотропная твердая среда. Граница раздела совпадает с плоскостью, ось направлена вглубь твердой среды.

Исходными для решения задачи являются уравнение движения Ламе (4) и граничное условие, где nj - компоненты единичной нормали к поверхности. На границе с вакуумом внешние силы Fi отсутствуют, а нормаль (рис. 3) имеет одну составляющую по z.

Для гармонических волн исходные волновые уравнения и граничные условия примут вид

Решение ищется в виде плоских гармонических волн, бегущих вдоль оси x в твердом полупространстве.

Для поверхностного эффекта амплитуды должны убывать вдоль нормали к границе

Первый тип решения поставленной задачи имеет вид

где В - амплитудная постоянная, определяемая условиями возбуждения волны. Такое решение соответствует однородной объемной (нет убывания амплитуды вдоль нормали к поверхности) сдвиговой волне поляризованной в направлении, перпендикулярном направлению распространения вдоль x и нормали к поверхности. Эта волна является неустойчивой в том отношении, что небольшие отклонения в постановке задачи (например, нагрузка поверхностным слоем или наличие в среде пьезоэффекта) могут сделать эту волну поверхностной. Второй тип решения задачи определяет поверхностную волну Рэлея.

Волновые векторы, и связаны между собой в силу граничных условий и рэлеевская волна представляет собой сложную акустическую волну.

Скорость рэлеевской волны определяется выражением

При изменении коэффициента Пуассона примерно скорость изменяется от до. Скорость зависит только от упругих свойств твердого тела и не зависит от частоты и рэлеевская волна не обладает дисперсией. Амплитуда волны быстро убывает с увеличением расстояния от поверхности. В рэлеевской волне частицы среды движутся согласно (14), (15) по эллиптическим траекториям, большая ось эллипса перпендикулярна поверхности и направление движения частиц на поверхности происходит против часовой стрелки относительно направления распространения волны. Рэлеевские волны были обнаружены при сейсмических колебаниях земной коры, когда были зарегистрированы три сигнала. Первый из них связан с прохождением продольной волны, второй сигнал связан с поперечными волнами, скорость которых меньше, чем у продольных волн. И третий сигнал обусловлен распространением волн по поверхности Земли. Кроме волн существует целый ряд других типов поверхностных акустических волн (ПАВ). Поверхностные поперечные волны в твердом слое, лежащем на твердом упругом полупространстве (волны Лява), волны в пластинках (волны Лэмба), волны на искривленных поверхностях, клиновые волны и т.д. Энергия ПАВ сосредоточена в узком поверхностном слое толщиной порядка длины волны, они не испытывают (в отличии от объемных волн) больших потерь на геометрическое расхождение в объем полупространства и поэтому они могут распространяться на большие расстояния. ПАВ легко доступны для техники, как бы «их легко взять». Эти волны широко используются в акустоэлектронике.

Основная статья: Поверхностные акустические волны в пьезоэлектриках

Поверхностные акустические волны в пьезоэлектриках (линейная среда) полностью характеризуются уравнениями для смещений U i и потенциала φ :

где T , S - тензоры напряжений и деформаций; E , D - векторы напряженности и индукции электрического поля; C , e , ε - тензоры модулей упругости, пьезомодулей и диэлектрической проницаемости соответственно; ρ - плотность среды.

Упругие волны, распространяющиеся вдоль свободной границы твердого тела или вдоль границы твердого тела с другими средами

Анимация

Описание

Существование поверхностных волн (ПВ) является следствием взаимодействия продольных и (или) поперечных упругих волн при отражении этих волн от плоской границы между различными средами при определенных граничных условиях для компонент смещения. ПВ в твердых телах бывают двух классов: с вертикальной поляризацией, у которых вектор колебательного смещения частиц среды расположен в плоскости, перпендикулярной к граничной поверхности, и с горизонтальной поляризацией, у которых вектор смещения частиц среды параллелен граничной поверхности.

К наиболее часто встречающимся частным случаям ПВ можно отнести следующие.

1) Волны Рэлея (или рэлеевские), распространяющиеся вдоль границы твердого тела с вакуумом или достаточно разреженной газовой средой. Энергия этих волн локализована в поверхностном слое толщиной от l до 2l, где l - длина волны. Частицы в волне Рэлея движутся по эллипсам, большая полуось w которых перпендикулярна границе, а малая u - параллельна направлению распространения волны (рис. 1а).

Поверхностная упругая волна Рэлея на свободной границе твердого тела

Обозначения:

Фазовая скорость волн Рэлея cR » 0.9ct, где ct - фазовая скорость плоской поперечной волны.

2) Затухающие волны рэлеевского типа на границе твердого тела с жидкостью при условии, что фазовая скорость в жидкости сL < сR в твердом теле (что справедливо почти для всех реальных сред). Эта волна непрерывно излучает энергию в жидкость, образуя в ней отходящую от границы неоднородную волну (рис. 1б).

Поверхностная упругая затухающая волна рэлеевского типа на границе твердого тела и жидкости

Обозначения:

х - направление распространения волны;

u,w - компоненты смещения частиц;

кривые изображают ход изменения амплитуды смещений при удалении от границы;

наклонные линии - фронты отходящей волны.

Фазовая скорость этой волны с точностью до процентов равна сR , коэффициент затухания на длине волны al ~ 0.1. Распределение по глубине смещений и напряжений - такое же, как в волне Рэлея.

3) Незатухающая волна с вертикальной поляризацией, бегущая по границе жидкости и твердого тела со скоростью, меньшей сL (и, соответственно, меньшей, чем скорости продольной и поперечной волн в твердом теле). Структура этой ПВ совсем другая, чем у рэлеевской волны. Она состоит из слабо неоднородной волны в жидкости, амплитуда которой медленно убывает при удалении от границы, и двух сильно неоднородных продольной и поперечной волн в твердом теле (рис. 1в).

Незатухающая ПВ на границе твердого тела и жидкости

Обозначения:

х - направление распространения волны;

u,w - компоненты смещения частиц;

кривые изображают ход изменения амплитуды смещений при удалении от границы.

Энергия волны и движение частиц локализованы в основном в жидкости.

4) Волна Стонли, распространяющаяся вдоль плоской границы двух твердых сред, модули упругости и плотности которых не сильно различаются. Такая волна состоит (рис. 1г) как бы из двух рэлеевских волн - по одной в каждой среде.

Поверхностная упругая волна Стонли на границе двух твердых сред

Обозначения:

х - направление распространения волны;

u,w - компоненты смещения частиц;

кривые изображают ход изменения амплитуды смещений при удалении от границы.

Вертикальные и горизонтальные компоненты смещений в каждой среде убывают при удалении от границы так, что энергия волны оказывается сосредоточенной в двух граничных слоях толщиной ~ l. Фазовая скорость волны Стонли меньше значений фазовых скоростей продольных и поперечных волн в обеих граничащих средах.

5) Волны Лява - ПВ с горизонтальной поляризацией, которые могут распространяться на границе твердого полупространства с твердым слоем (рис. 1д).

Поверхностная упругая волна Лява на границе "твердое полупространство - твердый слой"

Обозначения:

х - направление распространения волны;

кривые изображают ход изменения амплитуды смещений при удалении от границы.

Эти волны - чисто поперечные: в них имеется только одна компонента смещения v, а упругая деформация в волне Лява представляет собой чистый сдвиг. Смещения в слое (индекс 1) и в полупространстве (индекс 2) описываются выражениями:

v1 = (A¤cos(s1h)) cos(s1(h - z))sin(wt - kx);

v2 = AЧexp(s2 z) sin(wt - kx),

где t - время;

w - круговая частота;

s1 = (kt12 - k2)1/2;

s2 = (k2 - kt22)1/2;

k - волновое число волны Лява;

kt1, kt2 - волновые числа поперечных волн в слое и в полупространстве соответственно;

h - толщина слоя;

А - произвольная постоянная.

Из выражений для v1 и v2 видно, что смещения в слое распределены по косинусу, а в полупространстве экспоненциально убывают с глубиной. Для волн Лява характерна дисперсия скорости. При малых толщинах слоя фазовая скорость волны Лява стремится к фазовой скорости объемной поперечной волны в полупространстве. При wh¤ct2 >>1 волны Лява существуют в виде нескольких модификаций, каждая из которых соответствует нормальной волне определенного порядка.

К ПВ относят и волны на свободной поверхности жидкости или на границе раздела двух несмешивающихся жидкостей. Такие ПВ возникают под влиянием внешнего воздействия, например, ветра, выводящего поверхность жидкости из равновесного состояния. В этом случае, однако, упругие волны существовать не могут. В зависимости от природы возвращающих сил различают 3 типа ПВ: гравитационные, обусловленные в основном силой тяжести; капиллярные, обусловленные в основном силами поверхностного натяжения; гравитационно-капиллярные (см. описание ФЭ "Поверхностные волны в жидкости").

Временные характеристики

Время инициации (log to от -3 до -1);

Время существования (log tc от -1 до 3);

Время деградации (log td от -1 до 1);

Время оптимального проявления (log tk от 0 до 1).

Диаграмма:

Волну Рэлея можно получить на свободной поверхности достаточно протяженного твердого тела (граница "твердая среда - воздух"). Для этого излучатель упругих волн (продольных, поперечных) размещают на поверхности тела (рис. 2), хотя, в принципе, источник волн может находиться и внутри среды на некоторой глубине (модель очага землетрясения).

Генерирование волны Рэлея на свободной границе твердого тела

Применение эффекта

Поскольку сейсмические ПВ слабо затухают с расстоянием, ПВ, прежде всего Рэлея и Лява, используют в геофизике для определения строения земной коры. В ультразвуковой дефектоскопии ПВ используют для всестороннего неразрушающего контроля поверхности и поверхностного слоя образца. В акустоэлектронике (АЭ) с помощью ПВ можно создавать микроэлектронные схемы обработки электрических сигналов. Преимуществами ПВ в устройствах АЭ являются малые потери на преобразование при возбуждении и приеме ПВ, доступность волнового фронта, что позволяет снимать сигнал и управлять распространением волны в любых точках звукопровода и т.д.

Пример АЭ устройств на ПВ: резонатор (рис. 3).

Резонансная структура на поверхностных акустических волнах

Обозначения:

1 - преобразователь;

2 - система отражателей (металлические электроды или канавки).

Добротность до 104, низкие потери (менее 5 дБ), диапазон частот 30 - 1000 МГц. Принцип действия. Между отражателями 2 создается стоячая ПВ, которая генерируется и принимается преобразователем 1.

Анимация

Описание

Упругие сейсмические волны (СВ), возникающие вследствие возмущений земной коры (очаг землетрясения, взрыв), принадлежат к нескольким типам (рис. 1).

Характер смещения частиц среды в сейсмических волнах различных типов

Обозначения:

P - продольная волна Лява;

S - поперечная волна Лява;

L - поверхностная волна Лява.

По характеру пути распространения СВ делятся на объемные и поверхностные. В свою очередь объемные волны подразделяются на продольные (Р - волны) и поперечные (S - волны). Поверхностные волны возникают в результате взаимодействия объемных волн с поверхностью Земли или сейсмическими границами (типа слой - полупространство и т.п.); к наиболее распространенным типам поверхностных волн относятся волны Рэлея и волны Лява.

Объемные волны распространяются по всей толще Земли за исключением ядра, не пропускающего поперечные волны (поэтому считают, что ядро Земли находится в жидком состоянии). Р - волны связаны с изменением объема и распространяются со скоростью:

VP = [(l + 2m) /r]1/2,

где l - модуль сжатия;

m - модуль сдвига;

r - плотность среды.

Скорость поперечных волн, не связанных с изменением объема, равна:

Движение частиц в S - волне происходит в плоскости, перпендикулярной направлению распространения волны. В сферически - симметричных моделях Земли луч, вдоль которого распространяется волна, лежит в вертикальной плоскости. Составляющая смещения в волне S в этой плоскости обозначается SV, горизонтальная составляющая - SH.

Некоторые оболочки Земли обладают упругой анизотропией; в этом случае поперечная волна расщепляется на две волны с различными поляризациями и скоростями. Свойства земных недр изменяются по вертикали и горизонтали. Поэтому в процессе распространения объемные волны испытывают отражение, преломление, обмен (превращение P в S и наоборот), дифракцию и рассеяние. В результате запись СВ - сейсмограмма на большом расстоянии от источника распадается на ряд волновых пакетов или фаз (рис. 2).

Типичная сейсмограмма

Отождествление фаз и определение координат источника выполняется с помощью набора стандартных таблиц (годографов), задающих время пробега волны как функцию расстояния и глубины источника.

Поверхностные волны формируются в результате интерференции объемных волн и распространяются в верхней оболочке Земли, эффективная толщина которой зависит от длины волны. Характерной особенностью поверхностных волн является дисперсия скорости. Волны Рэлея и Лява различаются скоростью распространения и поляризацией колебаний частиц среды. Траектория частицы в волне Рэлея имеет составляющие SV и вертикальную. Волны Лява имеют поляризацию SH.

Частотный спектр сейсмических колебаний лежит в диапазоне от сотен Гц до ~ 3 *10-4 Гц. Высокочастотные СВ (порядка сотен Гц) могут быть зарегистрированы только на малых расстояниях от источника. В низкочастотной области (с периодами порядка сотен секунд и более) СВ приобретают характер собственных колебаний Земли, которые делятся на сфероидальные, имеющие поляризацию волн Рэлея, и крутильные, с поляризацией волн Лява. Известный к настоящему времени спектр сфероидальных и крутильных колебаний Земли насчитывает несколько тысяч собственных частот.

Временные характеристики

Время инициации (log to от -3 до 3);

Время существования (log tc от 1 до 5);

Время деградации (log td от -1 до 3);

Время оптимального проявления (log tk от 1 до 3).

Диаграмма:

Технические реализации эффекта

Техническая реализация эффекта

Генерирование СВ может быть осуществлено с помощью взрывов. В зависимости от мощности последних возможна регистрация различных типов СВ на различных расстояниях от точки взрыва. Так, волны от мощных взрывов, в том числе ядерных, проходят через все оболочки Земли и даже ядро (только P - волны), что позволяет использовать такие взрывы в для изучения внутреннего строения Земли.

Применение эффекта

По характеру распространения сейсмических волн различных типов можно получить информацию о внутреннем строении Земли, в частности, о месторождениях полезных ископаемых. Поверхностные волны, распространяющиеся на большие расстояния с относительно малым затуханием, обладают свойством дисперсии скорости; по дисперсионным зависимостям волн Рэлея определяют внутреннее строение земной коры (до глубин порядка длины волны). Методы отраженных и преломленных волн используют в сейсморазведке различных полезных ископаемых.

Включайся в дискуссию
Читайте также
Психосоматика от а до я Психосоматические заболевания причины и лечение народными средствами
Психиатр о лечении психосоматических заболеваний Кто лечит психосоматические заболевания
Династия Рюриковичей – генеалогическое древо с фото и годами правления Основные рюриковичи